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Introduction

Toric arrangements are sets of hypersurfaces on the real or complex torus, that is to
say on (S

1
)
n or (C∗

)
n. The hypersurfaces are defined by a character which is a map

from the torus to the multiplicative groups S1 respectively C∗. They are the analogue to
hyperplane arrangements, which are a set of hyperplanes in a vector space. The theory
of toric arrangements is a relatively young and still developing field, the first attempts
to this topic were made 1995 by Lehrer in [11]. It combines topology, combinatorics and
algebra, as explained for example in the textbook [5] by DeConcini and Procesi.

Note that for every toric arrangement A there is a corresponding periodic hyperplane
arrangement A ↑, which is a lifting of A as in [1]. The toric arrangement can be regarded
as the orbit space of a suitable action (by translation via the characters) on the vector
space containing A ↑.

On the other hand, a Weyl group W is a special kind of reflection groups (see [8])
and every reflection group yields an associated hyperplane arrangement, which is given
by the mirrors of W . The toric Weyl arrangement are the ones corresponding to Weyl
groups.

The aim of this thesis is the study of the fundamental group of the complement M(A )

of toric Weyl arrangements. Our conjecture is that the set of generators can be reduced
to one generator per hypersurface and the generators of the fundamental group of the
torus.

For a hyperplane arrangement A ↑ we introduce its Salvetti complex S(A ↑
), whose

fundamental group is isomorphic to the fundamental group of the complement of A ↑

(as shown by Salvetti in [15]). By regarding paths on the 1-skeleton of this complex, we
reduce the set of generators of π1(M(A ↑

)) = π1(S(A ↑
)) (as done by Salvetti in [15] and

d’Antonio, Delucchi in [1]).
Then we turn to the fundamental group of the complement of the corresponding toric

arrangement A . In the process, we partially correct [1]. In order to do that we have to
construct a fundamental domain of the action on the face poset of A ↑. Here too, more
care than in [1] must be taken. Furthermore, we check our conjecture in the concrete
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cases with a toric Weyl arrangement corresponding to a Weyl group of rank 2.

In Chapter 1 delivers insight into the theory of reflections group and the main results
about Weyl groups are recalled.

Chapter 2 contains the basics about hyperplane arrangements, including the construc-
tion of the Salvetti complex.

The construction of toric arrangements, their lifting to a hyperplane arrangement and
the connection to Weyl groups is described in Chapter 3.

The consideration of the fundamental group of the complement of an arrangement
starts in Chapter 4. We study the properties of the paths on the 1-skeleton of the
Salvetti complex of a hyperplane arrangement A ↑ since they can be regarded as loops
in M(A ↑

) around the hyperplanes. In the end, we translate this onto the torus and to
the corresponding toric arrangement A . We offer new or corrected proofs of some of the
statements in [1].

In Chapter 5 we examine the construction of this fundamental domain suggested in [1],
concluding that it is a fundamental domain depending on the choice of the base chamber
C0, the base point x0, and the basis of the character lattice Λ.

We conclude with the examination of the fundamental groups of the complements of
the toric Weyl arrangements corresponding to Weyl groups of rank 2.
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1 Reflection Groups

1.1 Reflections

In this chapter we recall the basics about finite reflection groups. For further knowledge
see for example [8], for a better intuition of reflection groups consider [4].

Definition 1.1.1. A reflection in an Euclidean space V endowed with a positive definite
symmetric bilinear form (λ, µ) is an orthogonal transformation r that fixes a hyperplane
H (subspace of codimension one) and sends any vector orthogonal to that hyperplane to
its negative. The hyperplane H is called the mirror of r.

The reflection is uniquely determined by the mirror, and vice versa. Thus any non-
zero vector α determines a reflection, which we call rα. The corresponding orthogonal
hyperplane is denoted by Hα. Obviously, non-zero vectors proportional to α yield the
same reflection. A formula for rα:

rα(λ) = λ− 2(λ, α)

(α, α)
α. (1.1)

It is easy to see that all properties of a reflection are fulfilled:
The map rα sends all λ in the span Rα of α to its negative and fixes Hα. Thereby (1.1)
holds for all λ ∈ V ∼= Rα⊕Hα since the right side of the formula is linear (with respect
to λ). Obviously, the map rcα equals rα for any non-zero scalar c. A quick calculation
shows that rα is an orthogonal transformation, i.e., (rα(λ), rα(µ)) = (λ, µ) for all λ, µ ∈
V . Also, note that the map rα is an involution.

A finite reflection group is a finite group generated by reflections.

1.2 Root systems

Since a reflection is uniquely determined by a vector, another approach to study reflection
groups is to study corresponding sets of vectors.
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1.2. ROOT SYSTEMS CHAPTER 1. REFLECTION GROUPS

Definition 1.2.1. A finite set Φ of non-zero vectors in V is called a root system if it
satisfies the following conditions:

(R1) Φ ∩ Rα = {α,−α} for all α ∈ Φ;

(R2) rαΦ = Φ for all α ∈ Φ.

The elements of Φ are called roots.

Actually the groups generated by the reflections rα for α ∈ Φ are exactly the finite
reflection groups. A proof of this can be found for example in [8]. In the following we
will just discuss finite reflection groups. So keep in mind that all our reflection groups
are finite, even though we omit mentioning "finite".

Now let us introduce the basic reflection groups An, Bn, Cn, Dn and the dihedral
group I2(m). As in most literature we will use the same notation An, Bn, Cn, Dn, I2(m)

for both the root system and the corresponding reflection group. Whether we are talking
about the root system or the reflection group should be clear from the context.

Firstly, let us consider the reflection group An−1 in Rn associated to the symmetric
group Sn. A transposition (i, j) in Sn acts on Rn by permuting the i-th and j-th coordi-
nate and thus defines a reflection in the hyperplane {xi − xj = 0}. Since Sn is generated
by the transpositions, we obtain a reflection group isomorphic to the symmetric group,
which has

An = {ei − ej |i, j = 1, ..., n; i �= j}

as root system (where {e1, ..., en} is the standard orthonormal basis of Rn).
Secondly, there are the two distinct root systems Bn and Cn, which generate the same

reflection group (denoted by BCn) in Rn. These root systems are

Bn = {±ei ± ej ,±ei|i, j = 1, ..., n; i �= j} and

Cn = {±ei ± ej ,±2ei|i, j = 1, ..., n; i �= j}.

More concretely, we start with the same reflections as above, i.e., the ones associated to
transpositions in Sn. Now we add the reflection obtained by sending ei to its negative
for all i. These sign changes generate a subgroup isomorphic to Zn

2 , which intersects
Sn trivially and is normalized by Sn, since conjugation just yields another sign change.
Therefore, the reflection group BCn is the semidirect product of Sn and the subgroup of
sign changes.

The reflection group Dn, n ≥ 4, is a subgroup of index 2 of BCn and consists of the
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CHAPTER 1. REFLECTION GROUPS 1.2. ROOT SYSTEMS

sign changes which involve an even number of signs. Its root system is

Dn = {±ei ± ej |i, j = 1, ..., n, i �= j},

which is of course a subsystem of Bn as well as Cn.
Furthermore, we have the dihedral group I2(m) (in geometry often denoted as Dm),

m ≥ 3, which is the group of symmetries of a regular m-sided polygon in the Euclidean
plane R2. It has order 2m, and contains m rotations and m reflections. The subgroup
of rotations is cyclic and generated by the rotation by 2π/m. But this rotation by 2π/m

can be obtained as a product of two reflections which meet at an angle of π/m. Hence
the dihedral group is also a reflection group.

Figure 1.2.2.

Reflection groups

The reflection groups and root systems A2 and B2.

Definition 1.2.3. If a reflection group W acts on V with no non-zero fixed points, then
W is called essential on V .

Proposition 1.2.4 (Compare [4], p.62). If Φ is a root system corresponding to the
reflection group W, then the following are equivalent:

(i) Φ spans V ;

(ii) the intersection of all mirrors corresponding to Φ consists of one point;

(iii) W is essential on V.

Example 1.2.5. The group An−1 is not essential on V = Rn, but An−1 is essential on
the hyperplane {x1 + ...+ xn = 0}.

From now on, we assume that our root system is essential. Otherwise, we will set
V = span(Φ).

3



1.2. ROOT SYSTEMS CHAPTER 1. REFLECTION GROUPS

1.2.1 Positive and simple roots

Even though we can completely characterize reflection groups by root systems, there is
still one disadvantage in using Φ for classification. The root system Φ may be extremely
large compared to the dimension of V . Take for example the dihedral group in R2. Thus
we look for a linear independent and generating subset of Φ.

Remember the definition of a total order on a vector space V . A transitive relation,
denoted <, satisfying the following axioms:

1. For all λ, µ ∈ V , exactly one of λ < µ, λ = µ, µ < λ holds.

2. For all λ, µ, ν ∈ V , if µ < ν, then λ+ µ < λ+ ν.

3. If µ < ν and c is a non-zero scalar, then cµ < cν if c >R 0, while cν < cµ if c <R 0.

Thus, if there exists a linear function f : V → R which does not vanish on Φ, i.e.,
f(α) �= 0 for all α ∈ Φ, then we get a total order on V by denoting λ < µ if f(λ) <R f(µ).
Otherwise, we can construct a total order by taking an ordered basis λ1, ...λn of V and
adopting the corresponding lexicographic order, i.e.,

�
aiλi <

�
biλi means that ak < bk

where k is the least index i for which ai �= bi.

Definition 1.2.6. A root α ∈ Φ is called positive relative to some total order on V if
0 < α. The subset Φ+ of all positive roots is called positive system. Correspondingly,
Φ
− is called the negative system. Due to (R1) it is evident that Φ−

= −Φ
+ is exactly

the subset of all negative roots (with respect to <).

For example, the total order obtained by lexicographic order is constructed such that
all elements λi of the basis are positive. Furthermore, it is easy to see that a root system
Φ is the disjoint union of the positive and the negative system (rel. to some total order).
Moreover, it is obvious that for a reflection group the positive system is not unique at
all but is determined by the total order.

By now, we have decreased our amount of roots to the half, but the number of roots
can still be extremely large compared to the dimension of the vector space. So we will
use some linear algebra for reduction.

Definition 1.2.7. A subset Π of Φ is called a simple system if Π forms a basis of the
R-span of Φ, and if all roots in Φ are a non-negative or a non-positive linear combination
of the elements in Π.
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CHAPTER 1. REFLECTION GROUPS 1.2. ROOT SYSTEMS

Clearly, the definition of simple roots highly depends on the current choice of the
positive system Φ

+. For a proof of existence of simple systems see, e.g., [8, p.8]. Evidently,
the simple system is depending on the choice of the positive system. There is actually a
one-to-one correspondence between simple and positive systems.

Definition 1.2.8. Let Φ be a root system, W = �rα| α ∈ Φ� the corresponding reflection
group and Π ⊂ Φ any simple system. Then the rank of W is the cardinality of Π, which
is the dimension of the span of Φ in V .

Example 1.2.9. A positive system of An is

Φ
+
= {ei − ej |i, j = 1, ..., n+ 1, j < i}

and the corresponding simple system is

Π = {e2 − e1, ..., en+1 − en},

hence the rank of An is n.

Figure 1.2.10.
Positive and simple system.

The figure shows a positive system of the reflection group A2. The dotted root is positive, but

not simple. Moreover, the marked chamber is the corresponding Weyl chamber relative to this

positive system (see Definition 1.3.9).

Example 1.2.11. For Bn (respectivelyCn) the set

Φ
+
= {ei, ei ± ej |i, j = 1, ..., n; j < i}

(respectively for Cn with 2ei instead of ei) is a positive system with the corresponding
simple system

Π = {e1, e2 − e1, ..., en − en−1}

(again 2e1 instead of e1 for Cn), hence the rank of Bn (respectivelyCn) is n, as well.
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1.2. ROOT SYSTEMS CHAPTER 1. REFLECTION GROUPS

Proposition 1.2.12 (See Section 1.4 in [8]). Let Π be a simple system, contained in
the positive system Φ

+. If α is a simple root, then the reflection rα will fix the positive
system without α, i.e., the image rα(Φ

+\{α}) equals Φ
+\{α}.

Proof. Let β ∈ Φ
+\{α}, then β is a non-zero positive linear combination of the simple

roots in the following way β =
�

γ∈Π cγγ and at least one cγ �= 0 with γ �= α since α is
the only multiple of α in Φ

+. Applying rα, we get rαβ = β − cα where the coefficients
of γ ∈ Π\{α} are still the same and positive. By the definition of simple roots, all
coefficients are positive and thus rαβ ∈ Φ

+. We see at once that rαβ cannot be equal
to α, because rα maps rαβ to β and α to −α ∈ Φ

−. Therefore rα maps γ ∈ Π\{α}
injectively into itself, and thus onto itself since we are talking about finite sets.

Proposition 1.2.13 (See Section 1.2 in [8]). Let t be an orthogonal transformation and
α any non-zero vector in V , then trαt

−1
= rtα.

Proof. Remember Definition 1.1.1 for rtα. We have to check that trαt
−1 maps tα to its

negative and that it fixes the hyperplane Htα. The first condition is evident. For the
second we use that γ lies in Hα if and only if tγ lies in Htα, because (γ, α) = (tγ, tα)

since t is orthogonal. Thus trαt
−1

(tγ) = trα(γ) = tγ, whenever γ ∈ Hα, and thereby
tγ ∈ Htα.

Especially this proposition says that rwα = wrαw
−1 lies also in W for w ∈ W . It also

allows us to speak of conjugacy under W = �rα| α ∈ Φ� for roots in Φ, namely α, β are
conjugate under W , if β = wα, because that means rβ = rwα = wrαw

−1.

Theorem 1.2.14 (See Section 1.4 in [8]). Any two positive (respectively simple) systems
in Φ are conjugate under W = �rα| α ∈ Φ�. That is to say, for two positive systems Φ

+

and ∆
+, there exists some w ∈ W with wΦ

+
= ∆

+.

Proof. Let Φ
+ and ∆

+ be two positive systems of the same root system Φ. Since a
positive system contains exactly one root for each mirror in the reflection group, Φ+ and
∆

+ have the same cardinality. We argue by induction on m, the cardinality of Φ+∩−∆
+.

If m is zero, the positive systems are obviously equal.
Now let m be greater than zero, then the simple system Π of Φ

+ cannot be fully
contained in −∆

+, otherwise Φ
+ and ∆

+ would be equal. Hence there exists an α ∈
Π ∩ −∆

+. By Proposition 1.2.12 we know that the cardinality of rαΦ+ ∩ −∆
+ equals

r − 1. Since rαΦ
+ is again a positive system, we can use our induction hypothesis.

Consequently, there exists some w ∈ W with w(rαΦ
+
) = ∆

+.

6



CHAPTER 1. REFLECTION GROUPS 1.3. COXETER AND WEYL GROUPS

1.3 Coxeter and Weyl groups

1.3.1 Generators and relations

Now we will abstract the theory, so we want to move away from the concrete description
of our group via reflections towards an algebraic description via generators and relations.

Definition 1.3.1. If β ∈ Φ and β =
�

α∈Π cαα be its unique expression with either only
non-negative or non-positive coefficients, then ht(β) =

�
α∈Π cα denotes the height of

β.

Theorem 1.3.2 (See Section 1.5 in [8]). The group W = �rα| α ∈ Φ� is generated by
the reflections rα with α ∈ Π. These reflections are called simple reflections.

Proof. Let W
� denote the group generated by the simple reflections. We need to show

that W � ⊂ W . Firstly, we will show that for an arbitrary positive root β the intersection
of W �

β and Π is not empty. So let γ be the element with the smallest height in W
�
β∩Φ+,

which is non-empty since it contains at least β. Now we will show that γ is simple. So
let γ =

�
α∈Π cαα be the expression in simple roots with non-negative coefficients, which

exists since γ is a positive root. Thus (γ, γ) =
�

α∈Π cα(γ, α) being positive implies that
(γ, α) > 0 for some α ∈ Π. If α = γ we are done.

Otherwise, we know that rαγ is a positive root according to Proposition 1.2.12, hence
rαγ is in W

�
β ∩ Φ

+, too. On the other hand we deduce from Equation (1.1) that
rαγ = γ − 2(γ,α)

(α,α) α, in which the coeffient in front of α is positive, since (γ, α) > 0 by
construction. So we obtain rαγ by subtracting a positive multiple of α from γ, though
that would mean ht(rαγ) < ht(γ), which contradicts the choice of γ. Thus γ ∈ W

�
β∩Φ

+

is simple and there exists w ∈ W
� with wβ = γ, i.e., W � ∩Π �= ∅.

Secondly, we show that W �
Π = Φ. Since β is an arbitrary positive root in the first part

of this proof, we already know Φ
+ ⊂ W

�
Π. Then wβ = α is the same as β = w

−1
α for

appropriate α ∈ Π and w ∈ W
�. If β is negative, then −β ∈ Φ

+ implies that −β = wα.
Hence β = wrαα, and again we get that β lies in W

�
Π. Therefore, W �

Π = Φ.
Finally, we are finally able to show W

� ⊂ W . Let rβ be an arbitrary generator of W .
Then there exists some α ∈ Π and some w ∈ W

� with β = wα. Due to Proposition 1.2.13
it follows rβ = wrαw

−1 ∈ W
�.

Definition 1.3.3. We conclude from the above, that every w ∈ W can be expressed as a
combination of simple reflections, say w = r1...rm with ri = rαi for all αi ∈ Π. If m is
minimal, then we call this expression reduced and l(w) = m the length of w.

7



1.3. COXETER AND WEYL GROUPS CHAPTER 1. REFLECTION GROUPS

The length of any w corresponds to the number of positive roots mapped to a negative
root by w (see Sections 1.6-1.7 in [8]).

Definition 1.3.4. A group F is called a free group generated by the set S ⊂ F if every
element can be written in a unique way as a reduced word in powers of generators s ∈ S,
i.e., for all g ∈ F we have g = s

a1
1 ...s

am
m for some s1, ..., sm ∈ S, a1, ..., am ∈ Z. The

empty word is the identity element 1.

Furthermore, we know that we can express every reflection group as follows (compare
with the Sections 1.6-1.9 in [8]):

Theorem 1.3.5. The reflection group W with simple system Π = {α1, ..., αn} is given
by generators and relations

W = �r1, ..., rn|(rirj)mij = 1�,

where ri = rαi and mij is the order of rirj.

We skip the proof, because it is not so important in order to understand the theory
and uses a lot of combinatorics. The interested reader can find the proof in [8].

Definition 1.3.6. Let R = {r1, ..., rn} be a set of generators, thus in particular linearly
independent. Then a Coxeter group is a group given by the generators and relations

W = �r1, ..., rn|(rirj)mij = 1�,

where mii = 1 and mij ≥ 2 for i �= j. The value mij = ∞ is allowed and means no
relation between ri and rj. The pair (W,R) is called a Coxeter system.

So a Coxeter group is an abstact group, which is completely determined by its gener-
ators and reflections. According to Theorem 1.3.5 every finite reflection group is a finite
Coxeter group. Actually, the converse is also true, you can find a proof in Chapter 6 of
[8].

1.3.2 Weyl groups

Definition 1.3.7. A root system Φ is called crystallographic if it satisfies in addition
to (R1) and (R2) the condition

(R3)
2(α, β)

(β, β)
∈ Z for all α, β ∈ Φ.

These integers are called Cartan integers.

8



CHAPTER 1. REFLECTION GROUPS 1.4. COROOTS

Actually, it is enough to require that the ratios have to be integers for all α, β ∈ Π. In
general, a subgroup G of GL(V ) is said to be crystallographic if it stabilizes a lattice L

in V , thus a Z-span of a basis of V .

Definition 1.3.8. A reflection group W generated by a crystallographic root system is
called Weyl group.

The reflection groups An, Bn,Cn and Dn are crystallographic, i.e., the roots systems
are crystallographic and satisfy (R3). So all of our examples for reflection groups are
also Weyl groups except for the dihedral group, which in general is not crystallographic.
Nonetheless, it is interesting to know that Bn and Cn are distinct crystallographic root
systems with the same Weyl group BCn (sometimes also Bn or Cn).

In fact, Weyl groups are exactly the reflection groups with mij equals 2,3,4 or 6 for all
i �= j in Π (see [8, p.38]). This leads us to the exceptions, when I2(m) is a Weyl group,
namely if m is either 3, 4 or 6, since then the dihedral group coincides with Weyl groups.
In the case m equals 3, this is A2, in the case m equals 4 it coincides with BC2 and I2(6)

forms a Weyl group denoted by G2.

Given a root system Φ on V , let the sets H
+
α = {λ ∈ V |(λ, α) > 0} and

H
−
α = {λ ∈ V |(λ, α) < 0} denote the open half-spaces in which Hα divides V for

every root α in Φ.

Definition 1.3.9. Let Π be a positive system, then the hyperplanes Hα, for α ∈ Π,
cut the Euclidean space V into several connected components, which are called (Weyl)

chambers. The chamber determined by the intersection of the open half-spaces H
+
α of

the simple roots α ∈ Π is called the fundamental Weyl chamber (relative to Π).

The Figure 1.2.10 shows the Weyl chamber (relative to the given positive system) of
the reflection group A2.

1.4 Coroots

Definition 1.4.1. Let Φ denote a root system as above, then call

α
∨
:=

2α

(α, α)
(1.2)

the coroot to α ∈ Φ. The set of all coroots Φ
∨ is called the dual (or inverse) of Φ.

The set Φ∨ is in fact also a root system and evidently produces the same corresponding
Weyl group W as Φ. By definition, (α∨

)
∨
= α and Φ is the dual root system of Φ

∨.

9



1.5. AFFINE WEYL GROUPS CHAPTER 1. REFLECTION GROUPS

Furthermore, in the majority of cases Φ and Φ
∨ are isomorphic, i.e., there exists a vector

space isomorphism φ : V → V mapping Φ to Φ
∨ such that (φ(α), φ(β)) = (α, β) for all

α, β ∈ Φ. However, the root systems Bn and Cn are dual to each other and produce the
same Weyl group, but they are not isomorphic.

The coroots can also be considered as elements of the dual space V
∗. A coroot α

∨ is
then identified with the map

α
∨
: V → R, λ �→ 2(λ, α)

(α, α)
.

For the reflection rα it holds that rαλ = λ−α
∨
(λ)α where we regard α

∨ as a linear map.

Definition 1.4.2. The Z-span L(Φ) of Φ in V is called the root lattice, similar the
coroot lattice L(Φ

∨
) is the Z-span of Φ∨.

Both these lattices are stable under the action of W .

1.5 Affine Weyl groups

Until now we have just considered linear reflections, which are leaving the origin in V

fixed. However, you can also examine affine reflections, whose reflecting hyperplane is
not going through the origin. So we could just have required a reflection to be a non-
identity isometry, that fixes an affine hyperplane and not necessarily the origin, instead
of our Definition 1.1.1.

The theory with root systems corresponding to reflections makes only sense for orthog-
onal reflections in an Euclidean space. Nevertheless, we can work with affine reflections
and root systems. We can construct affine reflections by using linear reflections and
translations.

Definition 1.5.1. For each root α ∈ Φ and each k ∈ Z, let

Hα,k = {λ ∈ V |(λ, α) = k} (1.3)

denote the affine hyperplane which is defined by α and k. The corresponding affine
reflection is defined by

rα,k(λ) = λ− ((λ, α)− k)α
∨
. (1.4)

Of course, we have Hα,0 = Hα as in Section 1.1 and H−α,−k = Hα,k. Note that we
obtain Hα,k by translating Hα by k

2α
∨, since for all λ in Hα the following holds

10
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(λ+
k

2α
∨
, α) = (λ, α) +

k

2 (α
∨
, α) =

k

2 (
2α

(α,α) , α) = k.

Let tµ denote the translation by µ for an arbitrary µ ∈ V , i.e., it sends λ to λ + µ.
Then

rα,k(λ) = λ− (λ, α)α
∨
+ kα

∨
= tkα∨ ◦ rα(λ),

thus an affine reflection is the composition of a linear reflection and a translation.

Definition 1.5.2. The group generated by all affine reflections rα,k with α ∈ Φ and
k ∈ Z is called affine Weyl group and is denoted by �W .

Proposition 1.5.3 (See Section 4.2 in [8]). �W is the semidirect product of W and the
translation group corresponding to the coroot lattice L(Φ

∨
).

This means especially that �W/Λ is isomorphic to W , when Λ = �Φ∨�Z = L(Φ
∨
) acts

on �W by translation (compare [12, p.9]). Let us skip the proof and take a look at some
figures to get a better intuition instead.

Figure 1.5.4.
Affine reflection groups.

�A2 and �B2.
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2 Hyperplane Arrangements

In this chapter we introduce some structure on hyperplane arrangements and we repeat
some basics in algebraic topology. Then we will construct the Salvetti complex, which is
homotopy equivalent to the complement of the corresponding hyperplane arrangement.

This chapter is orientated at the structure of the papers [1] and [2] by d’Antonio and
Delucchi.

2.1 Basics

Definition 2.1.1. Let V be a n-dimensional vector space over a field K (usually R or
C), and let l1, ..., lm ∈ V

∗ be linear forms, and b1, ..., bm ∈ K. Then we have m affine

hyperplanes, denoted by

Hi = {v ∈ V | li(v) = bi}.

The set containing all hyperplanes

A = {H1, ..., Hm}

is called an (affine) hyperplane arrangement.

Mostly we will just say "arrangement". An arrangement in the traditional definition
as above is finite, but it is also possible to regard just locally finite arrangements, that
is to say for all v ∈ V only a finite number of hyperplanes in A contains v.

For example, the hyperplane arrangement corresponding to an affine Weyl group (see
Example 1.5.4) is a locally finite arrangement, which is not finite. We will talk about
finite arrangements, unless otherwise stated.

Definition 2.1.2. If the intersection of all hyperplanes in A is empty, i.e.,
�

m

i=1Hi = ∅,
the arrangement A is called centerless. If the intersection is non-empty, i.e.,

�
m

i=1Hi =

M �= ∅, the arrangement is called centered with center M . In the case when all
hyperplanes are linear, that is the same as to say M contains the origin, we will call
the arrangement central. Furthermore, it is called real or complex if V is a real or
complex vector space.

12
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Figure 2.1.3.
Hyperplane arrangements.

A centered and a centerless hyperplane arrangement.

An important part of the theory of hyperplane arrangements is the study of the com-
plement of the arrangement, which we denote by

M(A ) = V \
� m�

i=1

Hi

�
. (2.1)

Definition 2.1.4. Let A be a real arrangement in the vector space V . The complement
M(A ) consists of several contractible connected components, which are called open

chambers of A . The set of open chambers will be denoted by T (A ).

Definition 2.1.5. Let A = {H1, ..., Hm} be an arrangement on V , and let L (A ) be
the set of non-empty intersections of hyperplanes in A . Then we define a partial order
on L (A ) by reverse inclusion, i.e., X ≤ Y if and only if Y ⊆ X. Hence we get the
intersection poset of A as

L (A ) =
��

i∈I Hi| I ⊂ {1, ...,m}
�
\{∅}

with minimal element V as the "trivial intersection" (thus
�

I
Hi where I = ∅).

If the arrangement is centered, we get the center M as unique maximal element in
L (A ).

Definition 2.1.6. Given a real arrangement A , we can define the set of faces of A as

F(A ) := {C ∩X| C ∈ T (A ), X ∈ L (A )}.

F(A ) = F is called the face poset of A partially ordered by inclusion.

We will also refer to the maximal elements of F(A ) as (closed) chambers.

A second way to construct the face poset is via the position of vectors with respect
to the hyperplanes. Remember the construction of the open half spaces H

−
α and H

+
α

in Section 1.3.2. For a real arrangement of hyperplanes A = {H1, ..., Hm} we have the
positive and the negative halfspaces

13
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H
+
i

= {v ∈ V | li(v) > bi} and H
−
i

= {v ∈ V | li(v) < bi}.

This leads us to the following definition:

Definition 2.1.7. Two vectors v, w ∈ V are similarly positioned with respect to A if
they are on the same side of Hi for all i. On the same side of Hi, for i = 1, ...,m, means
either both v and w lie in Hi, both lie in H

+
i

or both lie in H
−
i

.

Being similarly positioned with respect to A is obviously an equivalence relation and
the equivalences classes are called faces. This construction is frequently used in literature
to define a structure on V obtained by A . Like in the first notation of chambers, the
faces in this construction are open, but we want to work with the closed sets as faces.

As above in Definition 1.3.9 we distinguish one chamber:

Definition 2.1.8. Let B ∈ T (A ) be the chamber obtained as the intersection of all
positive halfspaces, that is to say B =

�
m

i=1H
+
i

. Then the closure B ∈ F(A ) is called
the base chamber.

Definition 2.1.9. If F is a face in F , then every hyperplane H ∈ A , which has a non-
empty intersection with the interior F

o of F , contains F . Thus the intersection of all
these hyperplanes also contains F and is an affine subspace, which we call the support

of F and denote by supp(F ). The dimension of F is the dimension of its support.

Evidently, the dimension of chambers is equal to the dimension of V . Moreover, we
denote the set of the faces of codimension i by Fi(A ) = Fi.

Definition 2.1.10. A face of dimension n − 1 in the boundary of a chamber C ∈ F is
called facet of C. A hyperplane containing a facet of C is a wall of the chamber C.

2.2 Complexes

In order to understand the construction in the next section, we have to repeat some
definitions of algebraic topology first. A complete introduction in the theory may be
found in the book [7] by A. Hatcher.

Roughly speaking, a CW complex is a building obtained by glueing similar building
blocks of increasing dimension, the k-cells, inductively together. Begin with the discrete
set of points, the 0-cells, as the elements of smallest dimension. Then attach the k-cells of
higher dimension along their boundaries inductively. The construction of a CW complex
was introduced by J. H. C. Whitehead.

14
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Definition 2.2.1. For a positive integer k an (open) k-cell is a topological space,
which is homeomorphic to the k-dimensional open ball, thus the interior of the k-disk
D

k. Furthermore, the 0-cells are set to be points.

Definition 2.2.2. A cell complex or CW complex is a Hausdorff space X constructed
in the following way:

• Start with the discrete set X0 of 0-cells in X, the 0-skeleton.

• Then attach the cells of greater dimension inductively. The k-skeleton X
k is

obtained from X
k−1 by attaching k-cells e

k
α via maps fα : S

k−1 → X
k. This means

that X
k is the quotient space of the disjoint union X

k−1 �α D
k
α with a collection

of k-disks D
k
α under the identifications x ∼ fα(x) for all x ∈ S

k−1
= ∂D

k
α. Hence,

the set Xk
= X

k−1 �α e
k
α where each e

k
α is an open disk.

• Set X = X
n, if this process stops after some n ∈ N. Then X is called n-

dimensional, as the biggest cells in X. Otherwise, set X =
�

k∈NX
k equipped

with the weak topology, i.e., A ⊂ X is open if and only if A∩X
k is open for all k,

and call it infinite-dimensional.

Figure 2.2.3.
CW complex.

The construction of a CW complex.

Definition 2.2.4. A CW complex X is called regular if for each cell ekα the restriction
of the attaching map fα : ∂D

k → fα(∂D
k
) is a homeomorphism.

Definition 2.2.5. Let x0, ..., xk be affinely independent points in the Euclidean space
Rn, i.e., they do not lie in an affine subspace of dimension k−1. Then the convex hull of
these k+1 points is a k-dimensional polytope, which is called a k-simplex and the points
are the vertices of this simplex. Moreover, a non-empty subset of {x0, ..., xk} spans a
subsimplex, which is called face of the simplex.

15
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Definition 2.2.6. A set of simplices ∆ is a simplicial complex if every face of a
simplex in ∆ is a simplex in ∆ as well and the intersection of any two simplices in ∆ is
a face of each of them.

Figure 2.2.7.
Simplicial complex.

An 3-dimensional simplicial complex.

Barycentric subdivision is a standard way to divide an arbitrary convex polytope,
or the cells of a cell complex, into simplices with same dimension. With this technique
a cell complex can be regarded as a simplicial complex, since its cells are fragmented in
simplices. In general, this works by fixing a "center of gravity", the barycenter, and
then divide with the aid of the barycenter the polytope or cell into several simplices.
For a k-simplex this are (k + 1)! smaller simplices. This descriptive definition should be
enough for us, for a formal definition see [7]. So let us regard some pictures to get our
intuition right.

Figure 2.2.8.
Barycentric subdivision.

The barycentric subdivision of a triangle.

Definition 2.2.9. Let X be a topological space and A be a subspace of X with the
inclusion map i : A �→ X. Then A is called a deformation retract of X if there exists
a continuous map r : X → A, which is called retraction, such that r ◦ i = idA and
i ◦ r �idA idX .
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Example 2.2.10. The 1-sphere S
1 is a deformation retract of X = R2\{0} � (C)∗ with

the deformation retraction r : (C)∗ → S
1
, z �→ z

|z| .

The former definitions allow us to state the following proposition. The interested
reader can find the proof in [7, p.36].

Proposition 2.2.11. If A is a deformation retract of the topological space X, then the
fundamental groups of A and X are isomorphic.

2.3 Salvetti poset

Definition 2.3.1. An arrangement A in V = Cn is called complexified if every hyper-
plane H in A is the complexification of a real hyperplane, i.e., the defining linear form
l lies in Rn\{0} and the defining scalar b is also real, such that

H = {z = x+ iy ∈ Cn| l(x) + il(y) = b}.

Let the real part of a complexified arrangement be denoted by

AR = {H ∩ Rn| H ∈ A } = {x ∈ Rn| lH(x) = bH , H ∈ A }.

If A is a complexified arrangement, then L (A ) = L (AR). Furthermore, we can
use the combinatorical structure of AR to study the topology of A . We will write
F(A ) = F(AR) and T (A ) = T (AR).

Definition 2.3.2. Let A be a complexified locally finite arrangement and H
+ and H

−

open half spaces as above for all H in A . Now we can define a sign vector for each
face F ∈ Fi, i �= 0, as the function ηF : A → {−, 0,+}, such that

ηF (H) :=






+, if F ⊂ H
+
,

0, if F ⊂ H,

−, if F ⊂ H
−
.

(2.2)

For F ∈ F0, we just take the interior F
o ∈ T (A ) instead of the closed chamber F . Then

ηF (H) : A → {+,−} can be defined as above with F
o in H

+ or H
−.

17
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Definition 2.3.3. If F ∈ F(A ) and C is a chamber in F(A ) or T (A ), let CF ∈ F(A )

denote the unique chamber such that

ηCF (H) =





ηF (H), if ηF (H) �= 0,

ηC(H), if ηF (H) = 0.

Intuitively, CF is the chamber touching F , which is closest to C.

Figure 2.3.4. The chamber CF .

Definition 2.3.5. Consider a complexified locally finite arrangement A and define the
Salvetti poset as the set

Sal(A ) = {[F,C]| F ∈ F(A ), C ∈ F0, F ≤ C},

with the following order relation

[F1, C1] ≤ [F2, C2] ⇔ F2 ≤ F1 and (C2)F1 = C1.

Example 2.3.6. Salvetti poset.

The Salvetti poset of an hyperplane arrangement.

18



CHAPTER 2. HYPERPLANE ARRANGEMENTS 2.4. SALVETTI COMPLEX

2.4 Salvetti complex

Definition 2.4.1. Let F ∈ Fk and Hi1 , ..., Hil be the hyperplanes containing it. Now
let C ∈ F0 be a chamber which also contains the face F . Then op(C,F ) denotes the
opposite chamber of C with respect to F . Hence op(C,F ) lies on the other side of Hij

as C for all j = 1, ..., l.

Now we are able to construct a graph G(A ), which will be quite important for our
considerations about the fundamental group of the complement of an affine arrangement
in Chapter 4. In the Sections 2.4.7 and 2.4.8 we will see that the homotopy classes of
loops in π1(M(A )) can be regarded as paths in the graph G(A ).

Definition 2.4.2. Let A be a complexified locally finite arrangement, then set G(A ) to
be the graph which has F0(A ) as set of vertices and whose set of edges is given by

E = {e[F,C] = (C,D)| F ∈ F1, C ∈ F0, F ≤ C, op(C,F ) = D}.

We say the edge e[F,C] crosses the hyperplane which supports F . Furthermore, we
orient the edge e[F,C] from C to op(C,F ), thus the index shows us the starting point and
the faces and thereby the hyperplane which is crossed. Two chambers, C and C

�, are
seperated by a hyperplane H, i.e., one lies in H

+ and the other one in H
−, if every path

in G(A ) connecting C and C
� is crossing H.

Figure 2.4.3.
Example for the graph G(A ).

Reproduced by permission of E. Delucchi.

Definition 2.4.4. A path in G(A ) is called minimal if it crosses every hyperplane in A

at most once. It is called positive if it follows the direction of all the edges. Otherwise
it is called negative if it traverses all edges against their orientation.

Definition 2.4.5 (Compare Definition 2.4 in [1]). The unsubdivided Salvetti com-

plex is the cell complex

(i) whose 1-skeleton is the realisation of the graph G(A );

(ii) whose k-cells correspond to the pairs [F,C] with F ∈ Fk and C ∈ F0 and
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(iii) the 1-skeleton of a k-cell [F,C] is attached along the minimal positive directed paths
in G(A ) from C to op(C,F ).

A closer look at the condition (iii) shows that it states that a cell [F1, C1] lies in the
boundary of the cell [F2, C2] in the unsubdivided Salvetti complex exactly when the
relation [F1, C1] ≤ [F2, C2] holds. This means that the poset Sal(A ) is the face poset of
the unsubdivided Salvetti complex.

In addition the maximal elements of Sal(A ) correspond to the pairs of a point and
a chamber containing it, hence the set of maximal cells in the unsubdivided Salvetti
complex is

�
[P,C]| P ∈ Fn, C ∈ F0, P ≤ C

�
.

Figure 2.4.6.
Example of the Salvetti complex.

C

Reproduced by permission of E. Delucchi.

The unsubdivided Salvetti complex is a regular cell complex and we obtain a simplicial
complex S = S(A ) by taking its barycentric subdivision.

Definition 2.4.7. Let A be a complexified locally finite arrangement in Cn, then the
simplicial complex S = S(A ) associated to Sal(A ) is called the Salvetti complex of
A .

S(A ) is the same complex that Salvetti constructed in Part One of [15].

Theorem 2.4.8 (See Salvetti in Part One of [15]). The Salvetti complex S(A ) is a defor-
mation retract of the arrangement’s complement M(A ) = Cn\

�
m

i=1Hi. In particular,
that means π1(M(A )) = π1(S(A )) according to Proposition 2.2.11.

The proof of this theorem is a little bit more complex, so the interested reader has to
verify it by himself in Part One of [15] by M. Salvetti.
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3 Toric Arrangements

Now we will transfer the theory of arrangements from vector spaces (or affine spaces)
to tori. The structure of our spaces changes and it is more difficult to handle. In the
first case we have simple linear algebra and in the second case we have to work with the
algebraic geometry of tori. So let us recall some definitions, which for example can be
found in [1] or [2].

Afterwards in Section 3.3 we will look at examples for toric Weyl arrangements, the
construction of the toric arrangement corresponding to the affine Weyl group �A2 and to
the affine Weyl group �BC2.

3.1 Definition

Definition 3.1.1. The n-dimensional complex torus is the space (C∗
)
n and the n-

dimensional compact torus is (S
1
)
n, with S

1 as the unit circle in C.

Definition 3.1.2. Let T = X
n be the n-dimensional compact or complex torus, thus X

is either S
1 or C∗. Then the maps χ :T → X given by the Laurent monomials over X

are the characters of T , thus we have

χ(x) = x
a1
1 ... x

an
n with a = (a1, ..., an) ∈ Zn

, for all x ∈ T.

The set of all characters of T will be denoted by Λ. It is a lattice with pointwise multi-
plication as operation, which is isomorphic to Zn via the mapping a �→ x

a1
1 ... x

an
n .

Definition 3.1.3. Given a compact or complex torus T and its set of characters Λ, then
the set

Hχ,a = {x ∈ T |χ(x) = a} with χ ∈ Λ, a ∈ S
1 or a ∈ C∗

is a hypersurface of T .

Definition 3.1.4. Let A be a finite subset of Λ×C∗, a (complex) toric arrangement

A is the collection of hypersurfaces generated by A, i.e.,

A = {Hχ,a|(χ, a) ∈ A}.
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We will also write
A = {(χ, a)|χ ∈ Λ, a ∈ C∗}

and may think of A as the finite collection of the hypersurfaces Hχ,a. The complement
of A is

M(A ) = (C∗
)
n\

�

(χ,a)∈A

Hχ,a.

Definition 3.1.5. If A is a finite subset of Λ× S
1 and Λ a finitely generated lattice as

above, then a real toric arrangement is given by the collection of hypersurfaces

H
R
χ,a = {x ∈ (S

1
)
n|χ(x) = a} with (χ, a) ∈ A.

As in Definition 2.3.1, when a complex toric arrangement restricts to a real toric ar-
rangement on (S

1
)
n, we call it complexified.

Example 3.1.6. A simple example of a toric arrangement.

The toric arrangement on the 2-dimensional compact torus which is given by the characters

t = 1 and s = −i.

Instead of the former concrete definition of the torus and its lattice, we can also
introduce a toric arrangement in a more abstract way, starting with a finitely generated
lattice as basic object rather than the "concrete" torus.

Definition 3.1.7. Let Λ ∼= Zn be a finitely generated lattice, then we define the corre-
sponding complex torus to be

TΛ = HomZ(Λ;C∗
).

Similarly,
T
R
Λ = HomZ(Λ;S

1
)

is the corresponding compact torus. For a choice of a basis {χ1, ..., χn} of Λ we get the
isomorphisms

ϕ : TΛ → (C∗
)
n with g �→ (g(χ1), ..., g(χn)),
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ϕ : T
R
Λ → S

1 with g �→ (g(χ1), ..., g(χn)).

Remark 3.1.8. The character lattice of TΛ is naturally isomorphic to Λ (see Remark
13 in [2]), therefore we can identify them in the following.

Based on this definition, we can construct a toric arrangement as above.
In contrast to an affine arrangement, the hypersurfaces in a toric arrangement are not

necessarily connected, such as in Example 3.1.6. Even more, the intersection of a finite
collection of connected hypersurfaces does not have to be connected in general. Thus we
need another combinatorial invariant to study the topology of the complement M(A ) in
the toric case corresponding to the intersection poset (see Definition 2.1.5) in the affine
case.

Definition 3.1.9. Let A be a toric arrangement on TΛ. Then we consider the set C(A )

of the connected components of non-empty intersections of hypersurfaces in A . The
elements in C(A ) are layers of A , and C(A ), ordered by reverse inclusion, is the layer

poset of A .

In the same way in comparison to the chambers (see Definition 2.1.4) and the faces
(see Definition 2.1.6) in a affine hyperplane arrangement, we define the toric ones.

Definition 3.1.10. Given a complexified toric arrangement A , let A R denote the ar-
rangement of hypersurfaces on the real torus T

R
Λ . Then the chambers of A are the

connected components of M(A R
) = T

R
Λ \

�
H

R
χ,α. T (A ) denotes the set of all chambers

of A . The set of faces of A is defined as

F(A ) := {C ∩X| C ∈ T (A ), X ∈ C(A )}.

As above, Fi is the subset of F(A ) containing all faces of codimension i.

The faces of A are the cells of a cell complex as in the affine case.

Definition 3.1.11. A toric arrangement is called essential if the layers of maximal
codimension are points.

Unless otherwise stated, our arrangement A will be essential and complexified from
now on. Since there always exists an essentialisation for all toric arrangement (see Remark
3.6 in [1]), it is no restriction to consider only essential arrangements.
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3.2 Covering space

In this section, we will see the connection between toric arrangements and hyperplane
arrangements.

Given a lattice Λ of rank n, consider the covering map

p : Cn ∼= HomZ(Λ;C) → HomZ(Λ;C∗
) = TΛ, (3.1)

g �→ exp ◦ g,

where exp : C → C∗, z �→ e
2πiz, is the exponential map. Since we can identify

HomZ(Λ;C) with Cn, p is the universal covering map

(x1, ...., xn) �→ (e
2πix1 , ..., e

2πixn)

of the torus TΛ. Moreover, we get a restriction of p on the compact torus

Rn ∼= HomZ(Λ;R) → HomZ(Λ;S
1
) = T

R
Λ . (3.2)

Thus we get an associated periodic affine hyperplane arrangement in Cn ∼= HomZ(Λ;C)
for the toric arrangement A . This hyperplane arrangement is not finite, but locally finite.
Besides it is the preimage of A under p and we will denote it by

A ↑
= {(χ, z) ∈ Λ× C | (χ, e2πiz) ∈ A }. (3.3)

The upwards arrow should indicate that A ↑ is obtained by lifting our original space.
An example of this connection between toric and affine arrangements can be found in
the next section.

Remark 3.2.1 (See [2], Remark 18). If A is complexified, so is A ↑.

Since A ↑ is a locally finite complexified hyperplane arrangement, there exists a corre-
sponding Salvetti complex, which we denote by S↑

= S↑
(A ) := S(A ↑

).

The character lattice Λ acts by translation cellulary on S↑ and continuously on the
covering space M(A ↑

). Thus we can consider the orbit space S↑
/Λ.

Proposition 3.2.2 (See [12], Lemma 1.1). Let A be an toric arrangement and Λ its char-
acter lattice, then the embedding S↑ → M(A ↑

) induces an embedding S↑
/Λ → M(A ),

such that the quotient S↑
/Λ is a deformation retract of M(A ).
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3.3 And Weyl groups?

In this section we will study toric arrangements corresponding to Weyl groups, which we
call toric Weyl arrangements.

Let V be an Euclidean space isomorphic to Rn, Φ an essential crystallographic root
system in V and �W the corresponding affine Weyl group. Then let Λ = �Φ∨�Z be the
coroot lattice as in Section 1.5, which is isomorphic to Zn, since Φ is essential. Now we
construct a torus as the quotient T = V/Λ ∼= Rn

/Zn
= (S

1
)
n. Taking the quotient over

Λ makes sense, because �W/Λ is isomorphic to W (see Proposition 1.5.3).
Furthermore, let A ↑

= {Hα,k |α ∈ Φ, k ∈ Z} be the affine arrangement which cor-
responds to �W . The hypersurfaces in the obtained toric arrangement are exactly the
orbits of the hyperplanes in A ↑. Additionally, Hα,k and Hα,m are equal if and only if
Hα,m is a translation of Hα,k by a coroot. Particularly, this means that there are at most
two orbits containing hyperplanes orthogonal to a fixed root α ∈ Φ, since according to
Section 1.5 the following holds

Hα,k = t k
2α

∨(Hα) = Hα +
k

2
α
∨
.

There exists exactly one hypersurface if

Hα,1 = tβ∨(Hα) = Hα + β
∨

for some β
∨ ∈ Φ

∨ (obviously distinct to α
∨). Hence,

A = {Hαi,ki |αi ∈ Φ, ki ∈ Z2}

is the toric arrangement associated to the affine Weyl group �W .

For a better understanding we will take a look at two examples. First, the construction
of the toric arrangement associated to the affine Weyl groups �A2. Afterwards we construct
the toric arrangements obtained by starting with the root system B2
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Figure 3.3.1.
The toric Weyl arrangement A2.

The figure shows the affine arrangement A ↑
2 with fundamental region of the action of Λ on R2

and the corresponding toric Weyl arrangement A2.

Figure 3.3.2.
The toric Weyl arrangement of BC2.

The figure shows the affine arrangement corresponding to �B2 with fundamental region of the

action of Λ on R2 and the corresponding toric Weyl arrangement.
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4 Fundamental Group

In this chapter we want to study the fundamental group of the complement of a complex-
ified toric arrangement. In order to do this, we have to take a look at the fundamental
group of the complement of the associated affine arrangement first.

So we start by recalling the presentation of the fundamental group of an affine arrange-
ment given by Salvetti in [15]. Then we transfer the gained achievements to the toric
arrangement, which we have considered at the beginning, as Delucchi and d’Antonio did
in [1].

4.1 The affine case

Let again A be a complexified toric arrangement, A ↑ be its lifting and F(A ) = F
respectively F(A ↑

) = F↑ be their face posets. Furthermore let Fi respectively F↑
i

denote the set of faces of codimension i. Now we can study the paths on the Salvetti
complex S↑, i.e., in M(A ↑

) according to Theorem 2.4.8, by regarding the paths along
the edges of the graph G↑

= G(A ↑
) (introduced in the Definition 2.4.2).

4.1.1 Paths on G(A ↑)

We index the edges of G↑ by the face of codimension one which they are crossing. More-
over, for F ∈ F1 the notation lF means crossing F along the direction of the edge, l−1

F

against the direction of the edge. Fixing the start point of a path determines the edges
which are used and in particular, in which direction. So there is no confusion, which way
we are going.

Definition 4.1.1. A path ν on G↑ is positive if there exist F1, ..., Fk ∈ F↑
1 such that

ν = lF1 ... lFk .

Definition 4.1.2. Let C,C � ∈ F↑
0 be arbitrary chambers in A ↑, then the path ν from C

to C
� is minimal if it crosses once and only once each hyperplane separating C from C

�,
and none of the other hyperplanes.

The set of all positive minimal paths from C to C
� is denoted by (C → C

�
).
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Lemma 4.1.3 (See [15], Lemma 11). All positive minimal paths from C to C
� are ho-

motopic in S↑.

Proof. Let us first consider a centered arrangement, so that there exists only one face,
say G, of codimension n. Thus µ, ν ∈ (C → C

�
) both lie in the boundary of the n-cell

[G,C] (remember the definition of a Salvetti complex in Section 2.4). Therefore, µ and
ν are homotopic in the Salvetti complex, since they can be transformed into each other
in the (contractible) n-cell [G,C].

In the general case, let H1, ..., Hp be the hyperplanes separating C from C
� and let

A �
= {H1, ..., Hp} be the obtained arrangement. By this, we restrict our observation

from the locally finite A ↑ to the finite arrangement A �. The maximal codimension of
intersections in L (A �

) (see Definition 2.1.5) is k ≤ n. Now let F1, ..., Fq ∈ F↑
k

be the
faces of codimension k in A ↑ such that their support supp(Fj) lies in L (A �

) and Fj lies
in the same side as both C and C

� with respect to all hyperplanes H ∈ A ↑\A �.
All positive minimal paths from C to C

� are contained in the union of the k-cells
[Fi, (C)Fi ], otherwise a path would have to cross a hyperplane twice. This union
∪q

i=1[Fi, (C)Fi ] is contractible (see [15, p.613]), thus the positive minimal paths are ho-
motopic.

4.1.2 Generators

Fix a chamber C0 ∈ F↑
0 and remember the Definition 2.3.3 of CF . Then we define for

every F ∈ F↑
1 the path

βF := µF l
2
Fµ

−1
F

(4.1)

with fixed µF ∈ (C0 → (C0)F ).
The homotopy class (relative to the base point) of βF is denoted by βF .

Figure 4.1.4.

The path βF .
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Theorem 4.1.5 (Shown by Salvetti in [15]). The fundamental group π1(S↑
) is generated

by the βF with F ∈ F↑
1 .

For a positive path ν = lF1 ... lFk we define the loops

β
ν

Fi
:= lF1 ...lFi−1 l

2
Fi
l
−1
Fi−1

...l
−1
F1

with i ≤ k. (4.2)

From now on we use βi as a shorthand for βFi and β
ν

i
for β

ν

Fi
.

Furthermore, let Fi1 , ..., Fit be the sequence obtained from F1, ..., Fk by recursively
deleting faces Fi if the supporting hyperplane supp(Fi) is the support of an odd number
of faces of Fi, ..., Fk (compare [15, p.614] or [1, p.22]) and define

Σ(ν) := {Fi1 , ..., Fit}. (4.3)

Thus, roughly speaking, Σ(ν) contains a face for every "loop" of ν around a hyperplane.

Remark 4.1.6. Moreover, Σ(ν) is empty if and only if ν is minimal. In fact, Σ(ν) is
empty implies ν crosses every hyperplane at most once, hence it is minimal. The converse
is obvious.

Lemma 4.1.7 (See [15], Lemma 12). Let ν = lF1 ... lFk be a positive path from C to C
�

and Σ(ν) = {Fi1 , ..., Fit}, then
ν � β

ν

it
... β

ν

i1
µ,

where µ ∈ (C → C
�
).

Proof. We use induction on t. When t equals zero ν is minimal and, therefore it is
homotopic to µ according to Lemma 4.1.3. Let t be greater than zero, then the path
lFit+1 ... lFk is minimal by definition of Σ(ν). Furthermore, the hyperplane H = supp(Fit)

is also crossed by lFit+s for some 0 < s ≤ k − it.
Let Ci−1 denote the start of lFi in ν and Ci the end of lFi in ν, C = C0 and C

�
= Ck.

For µ ∈ (Cit−1 → Cit+s) the path lFit
µ is a minimal path from Cit to Cit+s, note that

lFit
means to go from Cit to Cit−1 in positive direction here. Hence, the path lFit

µ is
homotopic to lFit+1 ... lFit+s , which is also minimal. Therefore, we have

ν = lF1 ... lFk � lF1 ... lFit
(lFit

µ)lFit+s+1 ... lFk

= (lF1 ... lFit−1)l
2
Fit

(l
−1
Fit−1

... l
−1
F1

)(lF1 ... lFit−1)µ(lFit+s+1 ... lFk)

= β
ν

it
(lF1 ... lFit−1)µ(lFit+s+1 ... lFk).
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For the path ν
�
= (lF1 ... lFit−1)µ(lFit+s+1 ... lFk) we know that µ(lFit+s+1 ... lFk) is

minimal. Moreover, ν � crosses every hyperplanes that ν crosses except for H = supp(Fit),
which is crossed two times less by ν

�. So Σ(ν
�
) = {Fi1 , ..., Fit−1} and thus the assumption

holds for ν
� by induction.

Lemma 4.1.8 (See [15], Corollary 12). Let F,G ∈ F↑
1 be two faces with the same support.

Moreover, let ν = lF1 ... lFk be a positive path from C0 to (C0)G and Fi1 , ..., Fit be the faces
whose support does not seperate C0 from (C0)F . Then

βF �
�

1�

j=t

β
ν

ij

�−1

βG

�
1�

j=t

β
ν

ij

�
.

Proof. For 1 ≤ i ≤ k, let Ci−1, Ci denote the first and the second end of lFi in ν, thus
(C0)G = Ck and ν starts in C0 as required. Furthermore, let Ck+1 denote the chamber
on the other side of G, hence Ck+1 = op((C0)G, G). Set C

�
= op((C0)F , F ) and let

µ ∈ (Ck+1 → C
�
), then we have the positive path νlGµ. Since νlG is minimal and νlGµ

crosses a hyperplane twice if and only if the support of Fi does not seperate C0 from
(C0)F , the path µ has to cross this hyperplane again and thus Σ(νlGµ) = {Fi1 , ..., Fit}.
Moreover, we know for the positive path νlGµlF that Σ(νlGµlF ) = {Fi1 , ..., Fit , G}.

Thus we deduce by Lemma 4.1.7:

νlGµ �
�

1�

j=t

β
ν

ij

�
εlF ,

νlGµlF � βG

�
1�

j=t

β
ν

ij

�
ε,

where ε ∈ (C0 → (C0)F ).
Multiplying with lF yields:

�
1�

j=t

β
ν

ij

�
εl

2
F � βG

�
1�

j=t

β
ν

ij

�
ε.

By considering that βF = εl
2
F
ε
−1, we get:

βF = εl
2
F ε

−1 �
�

1�

j=t

β
ν

ij

�−1

βG

�
1�

j=t

β
ν

ij

�
.
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In particular, Lemma 4.1.8 means that it is not so important where a path makes a
loop around a hyperplane.

4.1.3 Relations

Let G be a codimension one face of A ↑, and C ∈ F↑
0 be a chamber containing it. Denote

C
� to be the opposite chamber of C with respect to G and let ν = lF1 ... lFk be a positive

minimal path from C to C
�. Then define the subset h(G) := {F1, ..., Fk} of F↑

1 . The
ordering of h(G) is well-defined up to cyclic permutation.

Furthermore, let Fi+k ∈ F↑
1 denote the face which is also contained in suppFi, only

separated from Fi by G. In particular, the face G is also contained in Fi+k. Define the
path

αG(C) = l1... l2k, (4.4)

which corresponds to a circle around G.
Salvetti introduced a set of relations associated with G in [15, p.613]:

RG : βk...β1 � βσ(k)...βσ(1),

where σ is a cyclic permutation of (1, ..., k). Moreover, for ν ∈ (C → C
�
) we have

βσ(k)...βσ(1) � ναG((C0)G)ν
−1

.

The fundamental group of M(A ↑
) can be presented as generated by the βF together

with the relations RG. This is one of the results Salvetti showed in his paper [15, p.616].
Thus:

Theorem 4.1.9. Let A be a complexified essential toric arrangement as above, then the
fundamental group of the complement of the affine arrangement A ↑ is presented as

π1(S↑
) = �βF , F ∈ F↑

1 |RG, G ∈ F↑
2 �.

4.2 Connection to A

Let A and A ↑ be arrangements as above, C0 is again a fixed chamber in F↑
0 and choose

a basis of u1, ..., un of the character lattice Λ.
The set of characters Λ acts on V (Cn or Rn) by translation, for u ∈ Λ and z ∈ Cn we

denote the translation of z by u with u.z (compare Sections 1.5 and 1.3.2). Furthermore,
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if ν is a path on G↑ we write u.ν for the path obtained by translating ν by u. This is
valid action of Λ on G↑, since A ↑ is a periodic affine arrangement corresponding to Λ

and therefore, the path u.ν lies again on G↑.

Figure 4.2.1.
The action of Λ on F↑

by translation.

Now fix a generic point x0 in C0, such that the straight line segment si from x0 to
ui.x0 meets only faces of codimension at most one in A ↑ for all i = 1, ..., n.

Definition 4.2.2. Let u1, ..., un be a basis of Λ as above, then ωi denotes the path from
C0 to ui.C0 obtained by crossing the faces met by si. Moreover, define recursively the
paths ω

(k)
i

:= ω(ui.ω
(k−1)
i

) for a non-negative k. Similarly, define ω
(−1)
i

:= u
−1
i

.ω
−1
i

and ω
(−k)
i

= ω
(−1)
i

(u
−1
i

.ω
(1−k)
i

) for negative exponents. For an arbitrary u ∈ Λ with
presentation u = u

q1
1 ... u

qn
n define

ωu := ω
(q1)
1 u

q1
1 .ω

(q2)
2 ...

� n−1�

j=1

u
qj

j

�
.ω

(qn)
n .

Furthermore, define the paths

τi := p(ωi), τu := p(ωu)

in M(A ).

Note that, in general, the paths ωu are neither minimal nor positive. In fact, ωu is
positive if and only if all exponents qi are non-negative. Moreover, for an arbitrary i

we decude that ω
(k)
i

is minimal if and only if k non-negative, thus in this case ω
(k)
i

is a
positive minimal path.

Lemma 4.2.3 (See Lemma 5.8 in [1]). In M(A ), the path p(ω
(k)
i

) equals τ
k

i
and τiτj is

homotopic to τjτi for all i, j. Let ε : π1(M(A )) → π1(TΛ) be induced by the inclusion
M(A ) → TΛ, then π1(TΛ) is generated by the ετi, where τi denotes the homotopy
class of τi.
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We skip the proof and consider the action of Λ on F↑ by translation. As above, it is
a valid action. Now we construct a fundamental domain for this action.

Definition 4.2.4. Consider the Minkowski sum X
�
:= s1 + ...+ sn ⊂ Rn. Let Q denote

the set of all faces F ∈ F↑ which have a non-empty intersection with X
�. Moreover, set

Qi := Q ∩ F↑
i
. In particular, the set Q contains C0 and the faces crossed by some si are

contained in Q1.

The polytope X
� is a cell complex, so let F(X

�
) denote the set of its faces. For the

next definition we need to define another set, namely the set B of all faces of X � which
intersect the convex hull of {si\{ui.x0}|i = 1, ..., n}. Notice that all faces of X

� are
translations of faces in B by a combination of basis elements um1

1 ...u
mn
n with mi ∈ {0, 1}.

Let D be the union of the faces in B, then D is a fundamental domain of the action of
Λ on Rn.

Definition 4.2.5. Define the set

F↑ :={F ∈ Q|F ∩B = ∅ for all B ∈ F(X
�
)\B}

={F ∈ Q|F ∩X
�\D = ∅}.

Indeed, a face B of X � is not in B if and only if B is contained in X
�\D. Particularly,

for all faces in F↑ it holds that they do not intersect the line segments
�

j �=i
u
mj

j
.si for

all i and all mj ∈ {0, 1} with at least one mj �= 0.

Figure 4.2.6. The set F↑ in A ↑
2 .

Remark 4.2.7. The set F↑ always contains at least one representative for each orbit
of the action of Λ on F↑. If it is constructed in a particular way (with respect to the
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choice of C0, x0 and the basis of Λ), it contains exactly one representative. Thus it is a
fundamental domain for the action of Λ on F↑ in this case (see Chapter 5).

From now on we assume that C0, x0 and the basis of Λ are chosen in a way, such that
F↑ is a fundamental domain.

Definition 4.2.8. For a face F ∈ F↑ let F be the unique element in ΛF ∩ F↑ and
the translation is obtained by uF ∈ Λ, i.e., the face F is equal to the translation uF .F .
Furthermore, define the path

ΓF := ωuF (uF .βF )ω
−1
uF

for all F ∈ F↑
1 .

Remark 4.2.9 (See Remark 5.12 in [1]).

(1) For all F ∈ F↑ and arbitrary u ∈ Λ holds p(ΓuF ) = τup(ΓF )τ
−1
u .

(2) If F ∈ F↑
1, then ΓF = βF .

(3) If F ∈ Q and u1, ..., un is the basis of Λ, then uF =
�

n

i=1 u
ai
i

with ai ≥ 0 for all i.

(4) Since X
� is convex, the set Q0 contains the vertices of a positive minimal path

between two elements of Q0.

Definition 4.2.10. Define Ωi := {F ∈ F↑
1 |F is crossed by ω

(k)
i

for some k} for all
i = 1, ..., n and Ω :=

�
n

i=1Ωi.

Lemma 4.2.11 (See Lemma 5.14 in [1]). The subgroup of π1(M(A ↑
)) generated by all

βF with F ∈ Ωi is contained in the subgroup generated by all ΓF with F ∈ Ωi for all
i = 1, ..., n.

Our proof corrects the proof given in [1].

Proof. Let without loss of generality F be in Ω1 with F = u
k

1F . Let us first consider the
case k is non-negative, then ω

u
k
1
= ω

(k)
i

is positive minimal (recall the discussion after
Definition 4.2.2). If (C0)F = (uF .C0)F then βF � ΓF holds by construction.

So let k be greater than zero and (C0)F �= (uF .C0)F and m(F ) denote the length of
a minimal path from uF .C0 to (uF .C0)F , i.e., the number of hyperplanes both ωuF and
uF .βF cross. For m(F ) = 0 the path βF is again homotopic to ΓF by construction.
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Suppose m(F ) is positive and let Fi for i = 1, ...,m = m(F ) be the faces which ωuF

crosses after F = F0 in the translation of F↑ by uF , thus

ωuF = µlF0 ... lFm

where µ ∈ (C0 → (C0)F ). Moreover, we obtain

uF .βF � lFm ... lF1 l
2
F0
l
−1
F1

... l
−1
Fm

and µi � µlF0 ... lFi−1 for µi ∈ (C0 → (C0)Fi). So for ΓF we deduce

ΓF

def
= ωuF (uF .βF )ω

−1
uF

� (µlF0 ... lFm−1)lFm(lFm ... lF1 l
2
F0
l
−1
F1

... l
−1
Fm

)lFm(µlF0 ... lFm−1)
−1

� µml
2
Fm

µ
−1
m (µlF0 ... lFm−1)lFm−1 ... lF1 l

2
F0
l
−1
F1

... l
−1
Fm−1

(µlF0 ... lFm−1)
−1

µml
−2
Fm

µ
−1
m

� βm... β1β0β
−1
1 ... β

−1
m

where the last step uses βi � µil
2
Fi
µ
−1
i

. Therefore,

βF = β0 � (βm... β1)
−1

ΓF βm... β1

where for the βi with i ≥ 1 holds that m(Fi) < m(F ). By induction, the path βF is
homotopic to a product of the ΓG with G ∈ Ω1.

Assume k is negative and let ν ∈ ((C0)F → C0) be the path that follows the seg-
ments s1, then we argue by induction on the length d(F ) of ν. The induction starts at
d0 = min{d(F )|uF = u

−1
1 } ≥ 0 depending on the choice of F↑, particularly k = −1 and

(C0)F �= (uF .C0)F , and in this case ΓF is homotopic to βF .

Assume d(F ) is positive. Now we have to consider the two cases, (C0)F �= (uF .C0)F

and (C0)F = (uF .C0)F . So suppose (C0)F �= (uF .C0)F . Let µ be a minimal positive
path from C0 to (C0)F following s1, then we know

ΓF � ν
−1

l
2
F ν and βF = µl

2
Fµ

−1
.

Thus
βF = (µν)ν

−1
l
2
F ν(µν)

−1 � (µν)ΓF (µν)
−1

.

The path µν is positive. Now Σ(µν) be the set of all faces F ∈ F↑
1 crossed by µ.

Therefore, by Lemma 4.1.7 the path µν is homotopic to the product β
µ

d(F )... β
µ

1 . So for
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βF we conclude

βF �
�

�

Σ(µν)

β
µ

i

�
ΓF

�
�

Σ(µν)

β
µ

i

�−1

. (4.5)

Since the faces F � in Σ(µν) are crossed by µ, i.e., also by s1, they lie in Ω1. Furthermore,
the value d(F

�
) is lower than d(F ) for all F � in Σ(µν).

Now let us consider a face F with F = u
k

1.F , where k is negative, and (C0)F =

(uF .C0)F . Set ρ ∈ (C0 → uF .C0) and ξ ∈ (uF .C0 → C0), the paths which follow the
segment s1, then

βF � ρ uF .βF ρ
−1 and ΓF � ξ

−1
uF .βF ξ.

Thus

βF � (ρξ) ΓF (ρξ)
−1 �

�
�

Σ(ρξ)

β
ρ

i

�
ΓF

�
�

Σ(ρξ)

β
ρ

i

�−1

(4.6)

by Lemma 4.1.7. As above, the value d(F
�
) is lower than d(F ) for all F � in Σ(ρξ). By

induction, it follows that the β
µ

i
in (4.5) and the β

ρ

i
in (4.6) are homotopic to a product

of ΓF with F ∈ Ωi. Hence, the claim follows.

Lemma 4.2.12 (See Lemma 5.15 in [1]). The fundamental group π1(M(A ↑
)) is gener-

ated by all ΓF with F ∈ Ω.

Proof. For F ∈ F↑
1 we have to show that βF is generated by the ΓF with F ∈ Ω, because

we then deduce the claim from Theorem 4.1.9. The support H of F is crossed by ω
(k)
i

for
some i ∈ {1, ..., n} and some k ∈ Z ("every hyperplane is cut by the coordinate axes").
Let G denote the face in F↑

1 where ω
(k)
i

crosses H. By Lemma 4.1.8, we get that the path
βF is homotopic to the product of βG and other βG� with G

� ∈ Ω. Thus the homotopy
class of this product is generated by ΓF � with F

� ∈ Ω by Lemma 4.2.11.

4.3 On the torus

Now we have to transfer the above results to the toric arrangement A .

Definition 4.3.1. For F ∈ F↑
1 let γF be the path obtained as the image of ΓF under the

projection p, i.e., the path γF := p(ΓF ).

Definition 4.3.2. Let F be in Q1 and µ ∈ (uF .C0 → (uF .C0)F ), then define the path

∆F :=

�

F �∈Σ(wuF µ)

βF � .
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In particular, the faces F
� ∈ Σ(wuFµ) lie in Q by choice of F . Furthermore, define the

paths in M(A ) as follows

δF := p(∆F ) and γ
δ

F := δ
−1
F

γF δF .

Note that our definition of ∆F is different from the one given in [1]. In order to account
for the correction of the proof of Lemma 4.2.11, we had to change it to this defintion.

We define a toric equivalent to the relations RG in M(A ↑
) introduced by Salvetti in

[15]. So recall for G ∈ F↑
2 the relations in M(A ↑

):

RG : βk...β1 � βσ(k)...βσ(1), (4.7)

where h(G) = {F1, ..., Fk} (see Section 4.1.3 for the definition) and σ is a cyclic permu-
tation of {1, ..., k}.

For G ∈ F↑
2, we define

R
↓
G
: γ

δ

k
...γ

δ

1 � γ
δ

σ(k)...γ
δ

σ(1), (4.8)

where again h(G) = {F1, ..., Fk} and σ is a cyclic permutation of {1, ..., k}. As above,
the path γ

δ

i
denotes γ

δ

Fi
for Fi.

Lemma 4.3.3. If F is a face in Q1, then γ
δ

F
is homotopic to p(βF ).

Proof. By Lemma 5.16 in [1], we have βF � ∆
−1
F

ΓF∆F for F ∈ Q1. Thus by the use of
the projection p the claim follows immediately.

By Theorem 4.2.12, the path ∆F is homotopic to a product of the ΓF with F ∈ Ω.
Let M(F ) be the ordered set of faces in Ω, such that

∆F �
�

F �∈M(F )

ΓF � .

Lemma 4.3.4 (Rectifies Lemma 5.20 in [1]). For F ∈ Q1 and M(F ) ⊂ Ω as above, we
have

δF �
�

F �∈M(F )

τuF �γF � τ
−1
uF � .

In particular, the path γ
δ

F
can be written as a word in the τ1, ..., τn and γF with F ∈ F↑

1.
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Proof. This is an easy computation using Remark 4.2.9.

Lemma 4.3.5 (See Lemma 5.2 in [1]). π1(M(A )) is the semidirect product of π1(S↑
)

and π1(TΛ).

Immediately we get a presentation of the fundamental group of M(A ) with the preced-
ing lemmata. According to Lemma 4.2.3, we know that the τi generate the fundamental
group of the torus TΛ and the fundamental group of M(A ↑

) is generated by the ΓF by
Theorem 4.2.12. Furthermore, we have γ

δ

F
� p(βF ) for F ∈ Q1 by Lemma 4.3.3 and γ

δ

F

can be written as a word in the τi and γF with F ∈ F↑
1 by Lemma 4.3.4. Thus the

relations R
↓
G

can be expressed in terms of the τi and the γF with F ∈ F↑
1. So we get:

Theorem 4.3.6 (See Theorem 5.22 in [1]). The fundamental group π1(M(A )) of the
toric arrangement A is presented as

�τ1, ..., τn; γF , F ∈ Ω ∩ F↑
1|τiτj � τjτi for i, j = 1, ..., n;R

↓
G
, G ∈ F↑

2�.
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5 Fundamental Domain

As stated after Defintion 4.2.5 of F↑, the set F↑ is in general not a fundamental domain
of the action of Λ on F↑. In this chapter we discuss in which cases F↑ contains more
than one representative of some orbit and how the chamber C0 in A ↑, the point x0 and
the basis elements u1, ..., un of Λ have to be chosen in order for F↑ to contain exactly
one representative for each orbit.

5.1 Problems

Recall the general settings. The set A is a (complexified and essential) toric arrangement
and the affine arrangement A ↑ is its lifting as in Section 3.2. Their face posets are denoted
by F respectively F↑ while Fi respectively F↑

i
are their subsets of faces of codimension

i. The characters u1, ..., un form a basis of the lattice Λ, C0 ∈ F↑
0 is a fixed chamber and

x0 is a generic point in C0, such that the straight line segment si from x0 to ui.x0 only
meets faces of codimension at most one in A ↑ for all i = 1, ..., n.

We want to get a suitable fundamental domain for the action of the character lattice
Λ on the set F↑ of faces of A ↑, such that we are able to reduce our consideration about
π1(M(A )) to the paths corresponding to the faces in this fundamental domain.

Let us recall the construction of F↑ from Section 4.2 (see also Figure 4.2.6). We
start with the Minkowski sum X

�
= s1 + ... + sn ⊂ Rn. We then define the set

Q = {F ∈ F↑|F ∩ X
� �= ∅} and let B be the set of all faces of the polyhedron

X
� which intersect the convex hull of {si\{ui.x0}|i = 1, ..., n}. We get the subset

D =
�

F∈B F of X � as a fundamental domain of the action of Λ on Rn
.

Now we define

F↑ :={F ∈ Q|F ∩B = ∅ for all B ∈ F(X
�
)\B}

={F ∈ Q|F ∩X
�\D = ∅}.

In this way, the authors d’Antonio and Delucchi try in [1] to transfer the property
of D to be a fundamental domain of the action of Λ on Rn to F↑ and the action of Λ
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5.1. PROBLEMS CHAPTER 5. FUNDAMENTAL DOMAIN

on F↑. Unfortunately this does not always work, as sometimes we get more than one
representative for some orbits (see Figure 5.1.1).

Figure 5.1.1.
Counterexamples.

Two valid constructions of the set F↑, in both cases F↑ is not the wished set of representatives.

Remark 5.1.2. The set F↑ is not in general a fundamental domain of the action of Λ
on F↑.

Proof. As counterexample take a look at Figure 5.1.1, where we have the Weyl arrange-
ment corresponding to the Weyl group A2 with a valid choice of C0, x0 and the basis of
Λ. In the case when u2.s1 and u1.s2 cross the same face F ( �= u1u2.C0) in F↑, we get
that u

−1
1 .F as well as u

−1
2 .F are in F↑ and thus F↑ contains two representatives of the

corresponding orbit, one met by s1 and the other by s2.

Corollary 5.1.3. Let A be a toric arrangement on the 2-dimensional torus with u1, u2

as the basis of Λ. Then F↑ contains two representatives of some orbit of the action of Λ
on F↑ if and only if there exists a face F ( �= u1u2.C0) in this orbit which is met by both
u2.s1 and u1.s2.

Indeed, the set F↑ contains by construction (at least) one representative for each orbit
(Λ acting on F↑). Since D is a fundamental domain, it intersects each orbit. Define

ûi := u1... ui−1ui+1... un, (5.1)

then the appearance of more than one representative is connected with the constellation
of the segments ûi.si as seen in Figure 5.1.1 or in Figure 5.1.4 below. In fact, it depends
on the way the spans of the segments ûi.si meet the faces in F↑ of A ↑. Note that the
spans of the segments ûi.si are exactly the faces in X

�\D.
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Figure 5.1.4. Constellation of the segments si.

For a face F in Q, let N (F ) denote the set of faces in X
�\D which have a non-empty

intersection with F . Then N (F ) consists of flags of faces (of X �). Let NF

1 , ..., N
F

k
denote

the smallest faces of this flags, whereat NF

i
is not equal to N

F

j
for different i and j, and

k an integer from zero to n.

Lemma 5.1.5. The set F↑ contains more than one representative of some orbit of the
action of Λ on F↑ if and only if there exists a face F in this orbit, such that k is greater
than one and F is not met by the affine subspace generated by the common facet of
N

F

1 , ..., N
F

k
, which is

�
k

i=1N
F

i
.

Proof. Let say F
� �= F

�� are two representatives of the same orbit in F↑. If D meets
an orbit of the action of Λ on F↑ twice then the representatives have to be met by the
boundary of D. Hence, both F

� and F
�� are met by a face in D of lower dimension

than n. Say G
�
:= span{si|i ∈ I} � D is a face of lowest dimension which intersects F

�

and G
��
:= span{sj |j ∈ J} is a face of lowest dimension which intersects F

��.
Since F � �= F

�� it follows that I �= J . Moreover, since F �
, F

�� lie in the same orbit neither
G

� is a subset of G�� nor G
�� of G� and there exists some u ∈ Λ such that F

�
= u.F

��
.

More precisely, it holds u =
�

i∈I ui(
�

j∈J uj)
−1

. So set

F = ûI .F
�
= ûJ .F

��
,

where ûI :=
�

i/∈I ui and ûJ :=
�

j /∈J uj .
The face F intersects X �\D. In particular, it meets the faces ûI .G� �= ûJ .G

�� which are
parallel to G

� respectively G
�� and lie in N (F ). Furthermore, the faces ûI .G

� and ûJ .G
��

are the smallest elements of some flags in N (F ) by the choice of G� respectively G
��
.

Moreover, the fact that F intersects the affine subspace generated by those faces con-
tradicts the assumption, that F

� and F
�� lie in F↑.
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On the other hand, let F be a face, such that N (F ) contains more than one "smallest"
element and F does not intersect the span of their intersection. Thus there exist some sets
Ji � {1, ..., n} such that N

F

i
is the translation by ûJi of the face Gi := span{sj |j ∈ Ji}

in D for all i ≤ k.

The faces û
−1
J1

.F �= û
−1
Jk

.F (of A ↑) are met by the faces G1 respectively Gk (of X �) in
D and lie in F↑, since F does not intersect the span of the intersection of the N

F

i
. Thus

F↑ contains more than one representative of the orbit of F.

So we have to choose C0, x0 and the basis elements u1, ..., un in such a way, that those
"double crosses" do not occur.

5.2 Choice for A ↑
2

Let us start with the Weyl group A2 of rank 2 to understand the construction and then
generalize the idea.

Lemma 5.2.1. Let A2 be the toric Weyl arrangement corresponding to the Weyl
group A2. Then there exist a chamber C0 ∈ F↑

0 , a point x0 in C0 and a basis u1, u2

of the coroot lattice Λ, such that the set F↑ is a fundamental domain of the action
of Λ on F↑

(A2).

Figure 5.2.2.
Construction of F↑ for A ↑

2 .
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Proof. Choose an arbitrary chamber C0 ∈ F↑
0 of A ↑

2 , which is a 2-simplex. Then let the
hyperplanes H1 and H2 denote the walls of C0 corresponding to the simple roots α1 and
α2 of A2, and the hyperplane H0 denote the remaining third wall of C0. Furthermore,
let F0, F1, F2 be the corresponding facets of C0 and G0 ∈ F↑

2 denotes the vertex opposite
to F0 (in the 2-simplex C0). Now fix as x0 a point in C0, which is generic with respect
to the basis α1, α2.

Then set α1 and α2 to be the chosen basis of the (character/coroot) lattice Λ and
without loss of generality say the segment si does not leave C0 through Fi for i = 1, 2

(otherwise take −αi as base element).
In this way, we choose C0, x0 and the basis α1 and α2, such that F↑ of A ↑

2 is
constructed without "double crosses" and is thus a set of representatives (see Figure
5.2.2).

5.3 For Weyl arrangements

Lemma 5.3.1. Let A be a toric Weyl arrangement. Then there exist C0, x0 and a basis
of the coroot lattice, such that the set F↑ is a fundamental domain of the action of Λ on
F↑.

Proof. Choose a chamber C0 of the affine Weyl arrangement A ↑. Remember that n is
the rank of the Weyl group and Λ ∼= Zn. Take n coroots which are orthogonal to facets
of C0 and generate the coroot lattice Λ as basis. Let α1, ..., αn denote those coroots, the
usual ∨ to indicate a coroot is omitted to simplify matters.

This means that the Z-span of α1, ..., αn is Λ and there exist corresponding facets
F1, ..., Fn ∈ F↑

1 of C0, such that Fi is orthogonal to αi for all i. Note that this choice
of the basis just depends on C0 and not on x0, thus it is valid to fix x0 as an arbitrary
generic point relative to α1, ..., αn.

Without loss of generality the αi are chosen, such that the segment si does not leave
C0 by crossing Fi and thus α̂i.si arrives in α.C0 by crossing the translation α̂i.Fi of Fi

(with α := α1... αn and α̂i defined as in (5.1)). Therefore, we avoid that the segments
α̂i.si arrive in α.C0 by crossing the same facet (and the chamber "before"). According
to Lemma 5.1.5 this would yield more than one representative for some orbits.

Such a basis can always be chosen, since there always exists a total order (on V ) such
that C0 is the Weyl chamber (or a translation of it) for the particular simple (respectively
positive) system corresponding to this total order (see Section 1.2.1 and Definition 1.3.9).

As above, "double crosses" are avoided by this choice and the set F↑ is a set of
representatives of the action of Λ on F↑.
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6 Fundamental Group in Rank 2

In Chapter 4 we got a presentation of π1(M(A )) by Theorem 4.3.6 as final result, namely

π1(M(A )) = �τ1, ..., τn; γF , F ∈ Ω ∩ F↑
1| τi τj = τj τi for i, j = 1, ..., n;R

↓
G
, G ∈ F↑

2�.

Our conjecture is that the number of generators can be restricted even further to one
γF per hypersurface in A . In this chapter we will show that this is true for all toric Weyl
arrangements corresponding to Weyl groups of rank two.

6.1 The A2-case

So consider the toric Weyl arrangement A ↑
2 corresponding to A2, then the fundamental

group of A2 is generated by τ1, τ2 and six γF by the theorem above, since there exist six
faces F in Ω ∩ F↑.

Lemma 6.1.1. The fundamental group π1(M(A2)) is generated by the homotopy classes
of τ1, τ2, and three γF , one for each hypersurface of A2.

Figure 6.1.2.
Fundamental domain F↑ of A2.

The faces are indexed by the number i of the corresponding Fi in A ↑
2 .

Proof. Fix C0 and the basis of Λ = �Φ∨�Z ∼= Z2 as in Section 5.2, likewise F0, F1, F2 are
the facets of C0 labelled as above. Furthermore, set x0 to be a point which is obtained
by moving from the barycenter in the direction towards G0 away from F0. The point x0
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is generic with respect to α1, α2. Thus the set F↑ is a fundamental domain, in fact it is
the one seen in Figure 5.2.2.

Now choose three faces G in F↑ and then show that all six γF with F in Ω ∩ F↑ are
homotopic to a product of their γG and the τi. Therefore, let F0, F1 and F2 in F1(A

↑
2 )

denote the facets of C0 as in Section 5.2 and set

α = γF1 , β = γF2 and γ = γF0 .

Thus it follows by definition of γF (and the fact of the Fi lying in F↑) that

α = p(βF1), β = p(βF2) and γ = p(βF0).

The six faces in Ω ∩ F↑ are denoted in the following way (compare Figure 6.1.2):

• The first two faces in Ω ∩ F↑ are already labelled by F1 and F2.

• Then let F3 denote the face whose support is a translation of the hyperplane
supp(F1) and F4 denote the face whose support is a translation of supp(F2).

• F5 and F6 are the faces with the same support as F0.

Furthermore, set
α
�
= γF3 , β

�
= γF4 , γ

�
= γF5 and γ

��
= γF6 .

Therefore, the path α
� (respectively β

� and γ
�,γ��) makes a loop around the same

hypersurfaces as α (respectively β and γ) in M(A2). Moreover, let the liftings of these
paths to M(A ↑

2 ) be denoted by the uparrow ↑ (all starting in C0).
Let G denote the face in F↑

1\Ω with supp(G) = supp(F3). Then we deduce in M(A2):

(α
�
)
↑ 4.1.8� β

↑
βG(β

↑
)
−1 4.1.8� β

↑
ω
−1
2 u

−1
2 .α

↑
u
−1
2 .ω2(β

↑
)
−1

.

Hence,
α
� � βτ

−1
2 ατ2β

−1
.

Similiarly it follows
β
� � ατ

−1
1 βτ1α

−1
.

It is clear that
(γ

�
)
↑ 4.1.8� (γ

��
)
↑ 4.1.8� γ

↑
.

45



6.2. THE BC2-CASE CHAPTER 6. FUNDAMENTAL GROUP IN RANK 2

Thus for the last reamaining hypersurfaces we get

γ
� � γ

�� � γ.

Therefore, the fundamental group of M(A2) can be presented as

π1(M(A2)) = �τ1, τ2;α, β, γ|τ1τ2 � τ2τ1;R
↓
G
, G ∈ F↑

2�.

6.2 The BC2-case

Lemma 6.2.1. Let A be the toric Weyl arrangement corresponding to BC2. Then the
fundamental group π1(M(A )) is generated by the homotopy classes of τ1, τ2 and six γF ,
one for each hypersurface in A .

Figure 6.2.2.
Fundamental domain F↑ for BC2.

The faces are indexed by the number i of the corresponding Fi in A ↑.

Proof. Let C0 be an arbitrary chamber in A ↑
. Then let α1, α2 be the coroots orthogonal

to the facets of C0 which are the two legs of C0 regarded as a right-angled triangle. As
above, the coroots α1, α2 (in C2 or B2 depending if you started with B2 or C2) should be
chosen, such that for any point x0 in C0 the segments s1, s2 do not leave C0 by meeting
their orthogonal facet. By construction, the coroots α1, α2 generate Λ. By this choice,
any point in C0 is generic. So fix some point x0 in C0.

For this construction of F↑ the set Ω ∩ F↑
1 contains seven faces, but the toric Weyl

arrangement A corresponding to BC2 consists of six hypersurfaces. Let F1 and F2 denote
the faces in Ω∩F↑

1 which are orthogonal to the long edge of C0. Then p(F1) and p(F2)
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lie on the same hypersurface of A . Without loss of generality let F1 be the face met by
s1. Thus by construction and Lemma 4.1.8 holds

βF2 � ω
−1
1 u

−1
1 .βF1ω1.

Hence
γF2 = p(βF2) � τ

−1
1 γF1τ1.

Therefore, the claim follows by Theorem 4.3.6.

6.3 The D2-case

Lemma 6.3.1. Let A be the toric Weyl arrangement corresponding to the reducible group
D2 = A1 ⊕ A1. Then the fundamental group π1(M(A )) is generated by the homotopy
classes of τ1, τ2, and four γF , one for each hypersurface in A .

Figure 6.3.2.
Fundamental domain F↑ for D2.

Proof. Let C0 be an arbitrary chamber of A ↑, α1, α2 ∈ D
∨
2 = D2 a basis of the coroot

lattice Λ, and x0 an arbitrary point in C0 (any point in C0 is generic).
Then the set Ω ∩ F↑

1 contains four faces, whereat each one corresponds to a different
hypersurface in A . Thus the claim follows immediately by Theorem 4.3.6.

Furthermore, we get as relations R
↓
G
:

αβ � βα, αγ � γα, βδ � δβ and γδ � δγ,

where α, β, γ, δ are denoted as in Figure 6.3.2.
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6.4 The G2-case

Lemma 6.4.1. Let A be the toric Weyl arrangement corresponding to G2. Then the
fundamental group π1(M(A )) is generated by the homotopy classes of τ1, τ2 and six γF ,
one for each hypersurface in A .

Figure 6.4.2.
Fundamental domain F↑ for G2.

The faces are indexed by the number i of the corresponding Fi in A ↑.

Proof. Choose an arbitrary chamber C0 of A ↑. As above C0 can be regarded as a right-
angled triangle. Then choose element the root α1 in G

∨
2 which is orthogonal to the

hypotenuse of C0 and directed in a way such that s1 does not leave C0 by meeting the
facet which is the hypotenuse as the first basis element. The second basis element α2

should be the root in G
∨
2 which is orthogonal to the short leg of C0 and directed in a

way such that s2 does not leave C0 by meeting the facet which is the short leg.
As generic point x0 fix a point close to the vertex between the short leg and the

hypotenuse. For example, choose the point which lies on three quarters of the segment
from the barycenter to this vertex. By this choice, the set F↑ is a fundamental domain
and Ω ∩ F↑

1 contains ten faces.
Label this faces in the following way:

• Let F1, F2, F3, F4, F5 be the faces met by s1 (ordered in the way they are met).

• And let F6, F7, F8, F9, F10 be the faces met by s2 (ordered as well in the way they
are met).

The toric Weyl arrangement A corresponding to G2 contains six hypersurfaces, thus
we have to reduce the number of generators γFi (corresponding to the faces F1, ..., F10)
by four.

So set
α = γF2 , β = γF1 , γ = γF6 , δ = γF7 , ε = γF9 and ζ = γF10 .
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Then it follows for βF3 in M(A ↑
), that

βF3

4.1.8� βF2βF1βG(βF2βF1)
−1 4.1.8� βF2βF1ω

−1
2 u

−1
2 .βF6ω2(βF2βF1)

−1
,

where G denotes a face in F↑ which is not equal to F3, but has the same support.
Hence, we deduce

γF3 � αβτ
−1
2 γτ2(αβ)

−1
.

For the face F4 it holds that

βF4

4.1.8� ω1(u1.βF6)
−1

u1.βF7u1.βF6ω
−1
1 .

Therefore, it follows
γF4 � τ1γ

−1
δγτ

−1
1 .

Moreover, for the face F8 we get

βF8

4.1.8� βF7βF6βH(βF7βF6)
−1 4.1.8� βF7βF6ω

−1
1 u

−1
1 .βF1ω1(βF7βF6)

−1
,

where H denotes the face in F↑ which is not equal to F8, but has the same support.
Thus for γF8 in M(A ) follows

γF8 � δγτ
−1
1 βτ1(δγ)

−1
.

Finally, for the last remaining face F5 we have

βF5

4.1.8� (βF9βF8βF7βF6)
−1

βF10(βF9βF8βF7βF6).

Hence, in M(A ) it holds

γF5 � (ε γF8δ γ)
−1

ζ(ε γF8δ γ).

Therefore, the fundamental group π1(M(A )) is generated by the homotopy classes of
α, β, γ, δ, ε, ζ and τ1, τ2.
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7 Going Forward

1. Higher rank.

For the arrangements corresponding to Weyl groups of rank two it is true, that the
generators of the fundamental group of the complement of a toric Weyl arrangement A

can be reduced to the generators of the fundamental group of the torus and one generator
per hypersurface in A .

However, for Weyl groups of higher rank the question remains open, even in the case
of the arrangement An. The main problem is the choice of representatives for the hyper-
surfaces, such that they generate the fundamental group.

2. Fundamental domain.

Moreover, for the first reduction of the generators the set F↑ at the end of Chapter 4
has to be a set of representatives as discussed in Chapter 5. For toric Weyl arrangements
the base chamber C0, the base point x0 and the basis elements u1, ..., un of the character
lattice can be chosen in such a way that F↑ is a fundamental domain.

This yields the challenge to choose C0, x0 and the ui in a more general way such that
F↑ is a fundamental domain for an arbitrary toric arrangement. A possible strategy
could be to use vectors orthogonal to the hyperplanes in A ↑ similarly to the idea with
orhtogonal coroots for Weyl arrangement from Chapter 5. Alternatively, one can try to
adopt the construction of [2].
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