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1 Introduction

Brylawski conjectured 1972 in [2] that the Tutte polynomial of a connected matroid is

irreducible. This assumption was proven by Merino, de Mier and Noy 2001 in [5]. The

main tool of this proof is a set of linear equations based on the coe�cients of the Tutte

polynomial. The subject of the present thesis is a complete account of the proof of the

irreducibility of the Tutte polynomial of a connected matroid. In particular, the precise

conditions required for the validity of the set of linear equations were brought into focus.

Thereby some proofs turned out to be incomplete or even wrong. These proofs were

corrected and rewritten with a di�erent approach.

This analysis is the foundation of the study weather Brylawski's conjecture could also

be generalized to the arithmetic Tutte polynomial. We leave this as a future object of

investigation.

2 De�nitions and Basics

All following de�nitions can be found in [2], [5] and [6].

De�nition. A matroid M = (E, I) is an ordered pair consisting of a �nite set E and a

collection I of subsets of E with the following properties:

(I1) ∅ ∈ I.

(I2) If I ∈ I and J ⊆ I, then J ∈ I.

(I3) If I, J ∈ I and |I| < |J |, then an element e ∈ J \ I exists, such that I ∪ e ∈ I.

The set E is called the ground set ofM and the elements of I or I(M) are the independent

sets. A set not contained in I is called dependent.

In the following de�nitions let M = (E, I) be a matroid.

De�nition. A maximal independent set of M is a basis of M , B(M) denotes the set of

bases of M .

De�nition. The dual matroid M∗ of M is a matroid with ground set E and bases

B(M∗) = {E \B : B ∈ B(M)}. For B ∈ B(M) the dual basis of B is denoted by B∗.

De�nition. A minimal dependent set of M is called a circuit of M .
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De�nition. For A ⊆ E the rank of A in M is de�ned as the cardinality of a greatest

independent set contained in A, rM (A) := maxX⊆A,X∈I(M) |X|.
The rank of a matroid M is rM (M) := rM (E).

The corank of A in M is crM (A) := rM (M) − rM (A) and the nullity of A in M is

nM (A) := |A| − rM (A).

Remark. The rank of a matroid is the cardinality of a basis.

Corollary 1. A subset A ⊆ E is independent in M if and only if nM (A) = 0.

De�nition. The closure of A ⊆ E in M is clM (A) := {x ∈ E : rM (A ∪ x) = rM (A)}.

De�nition. F ⊆ E is a �at or closed set of M if clM (F ) = F .

De�nition. A �at H ⊆ E with rM (H) = rM (M) − 1 is called a hyperplane of M and

the set E \H is called a cocircuit of M .

Remark. If C ⊆ E is a cocircuit in M , then C is a circuit in M∗.

De�nition. An element e ∈ E, for which {e} is a circuit of M is called a loop. An

element of E, which is in every basis ofM is an isthmus. An element of E that is neither

a loop nor an isthmus is called nonfactor of M .

Remark. Loops of M are not in any basis of M .

De�nition. For e ∈ E the deletion M \ e is a matroid M \ e = (E \ e, I(M \ e)), where
the independent sets are

I(M \ e) = {I ∈ I(M) : e /∈ I}.

De�nition. If e ∈ E is not a loop, the contraction M/e is a matroidM/e = {E \ e, I(M/e)}
with independent sets

I(M/e) = {I : I ⊆ B \ e,B ∈ B(M), e ∈ B}.

When e ∈ E is a loop, the contraction M/e is de�ned as the deletion M \ e.

De�nition. For two matroidsM1 = (E1, I(M1)) andM2 = (E2, I(M2)) withE1 ∩ E2 = ∅
the direct sum of M1 and M2 is a matroid M1 ⊕M2 = (E1 ∪ E2, I(M1 ⊕M2)) with in-

dependent sets

I(M1 ⊕M2) = {I1 ∪ I2 : I1 ∈ I(M1), I2 ∈ I(M2)}.
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De�nition. For a matroid M = (E, I) the Tutte polynomial is de�ned as

T (M ;x, y) =
∑
A⊆E

(x− 1)crM (A)(y − 1)nM (A).

Proposition 1 (stated in [5, Theorem 1.4.]). Let the matroid M be the direct sum of

M1 and M2. Then

T (M ;x, y) = T (M1;x, y)T (M2;x, y).

De�nition. A matroid M is connected if it cannot be expressed as a direct sum of two

nonempty matroids.

Proposition 2 (stated in [5]). M is connected if and only if for every two distinct

elements of E there is a circuit containing both.

Remark. Every matroid with |E| = 1 is connected since it cannot be expressed as a

direct sum of two nonempty matroids.

Remark. For |E| > 1, the smallest connected matroid is M = (E, I) with E = {1, 2}
and I = {∅, {1}, {2}}. Its Tutte polynomial is

T (M ;x, y) =
∑
A⊆E

(x− 1)cr(A)(y − 1)n(A)

= (x− 1)cr(∅)(y − 1)n(∅) + (x− 1)cr({1})(y − 1)n({1})

+ (x− 1)cr({2})(y − 1)n({2}) + (x− 1)cr(E)(y − 1)n(E)

= (x− 1)1(y − 1)0 + (x− 1)0(y − 1)0 + (x− 1)0(y − 1)0 + (x− 1)0(y − 1)1

= x− 1 + 1 + 1 + y − 1

= x+ y.

M is the only connected matroid on a ground set with two elements.

De�nition. A Boolean algebra is a matroid Bn, which is the direct sum of n isthmuses.

A pre-Boolean algebra is a matroid Bnm, which is the direct sum of n isthmuses and m

loops.

Remark. Since all elements of Bnm are either loops or isthmuses, Bnm is the general

matroid with zero nonfactors.

Proposition 3 (stated in [2]). The Tutte polynomials of Bn and Bnm are T (Bn;x, y) = xn

and T (Bnm;x, y) = xnym respectively.
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Theorem 1 (Deletion-Contraction Formula, stated in [3, Theorem 6.2.2.]). If e ∈ E
is a nonfactor of the matroid M = (E, I), then

T (M ;x, y) = T (M \ e;x, y) + T (M/e;x, y).

Proposition 4. For a matroid M , T (M ; 1, 1) enumerates the bases of M .

Proof. T (M ; 1, 1) =
∑

A⊆E(1−1)crM (A)(1−1)nM (A) =
∑

B⊆E 1, where B ⊆ E are those

subsets of E, for which crM (B) = nM (B) = 0. These subsets B are exactly the bases of

M . �

Basis Activities (adapted from [3, Section 6.6.A] and [2, Section 6]).

Let M be a matroid. We want to describe its Tutte polynomial in an alternative form∑
i,j bijx

iyj . Therefore we consider the internal and external activity of the bases of M .

Since T (M ; 1, 1) enumerates the bases of M by Proposition 4, we may partition B(M)

into blocks Bij . Then we set bij := |Bij | as the coe�cient of xiyj in the Tutte polynomial

T (M ;x, y).

To obtain such a partition, we �rst linearly order the ground set E of M by relabeling

its elements by 1, . . . , n.

Let B ∈ B(M). An element p ∈ B is internally active, if p is the least element in the

unique cocircuit contained in (E \ B) ∪ p. The number of elements of B, which are

internally active is called the internal activity ι(B) of B.

An element q ∈ E \ B is externally active, if q is the least element in the unique circuit

contained in B∪q. The number of elements of E \B, which are externally active is called

the external activity ε(B) of B.

We de�ne bij as the number of bases with internal activity i and external activity j to

get the desired partition of B(M). This is

Bij = {B ∈ B(M) : ι(B) = i, ε(B) = j}.

The coe�cients bij do not depend on the linear ordering chosen for E.

Remark. Since bij counts bases of M it is bij ≥ 0 for all i, j.

Proposition 5. LetM be a matroid andM∗ its dual. Then ι(B) = ε(B∗) and ε(B) = ι(B∗)

for all B ∈ B(M).

Proof. Let B a Basis of M with an internally active element p ∈ B. Then by de�nition

p is the least element in the unique cocircuit contained in (E \ B) ∪ p = B∗ ∪ p. Since
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a cocircuit of M is a circuit in M∗, p ∈ E \ B∗ is the least element in the unique

circuit contained in B∗ ∪ p and hence externally active in M∗. This implies the equality

ι(B) = ε(B∗). Since the dual of M∗ is M it follows that ε(B) = ι(B∗). �

Corollary 2 (stated in [5, Theorem 1.6.]). If T (M ;x, y) is the Tutte polynomial of a

matroid M , then T (M∗; y, x) is the Tutte polynomial of its dual M∗.

Corollary 3. A matroid is connected if and only if its dual is connected.

De�nition. Let M = (E, I) be a matroid. Its Tutte polynomial via basis activities is

T (M ;x, y) =
∑
i,j

bijx
iyj .

3 Brylawski's Conjecture

Theorem 2 (stated in [4, Theorem 1]). Let M be a connected matroid. Then its Tutte

polynomial T (M ;x, y) is irreducible in Z[x, y].

4 Preliminary Theorems

Proposition 6 (adapted from [2, Proposition 4.1.]). Let M = (E, I) be a matroid and

e ∈ E, then the following statements apply.

(1) For A ⊆ E \ e is rM (A) = rM\e(A).

(2) If e ∈ E is not a loop of M and e ∈ A ⊆ E, then rM (A) = rM/e(A \ e) + 1.

(3) e ∈ E is an isthmus of M if and only if rM (M) = rM (E \e)+1 = rM\e(M \e)+1.

If e ∈ E is not an isthmus of M , then rM (M) = rM\e(M \ e).

(4) e ∈ E is a loop of M if and only if rM (M) = rM/e(M/e).

If e ∈ E is not a loop of M , then rM (M) = rM/e(M/e) + 1.

Proof. (1) For rM (A) = maxX∈I,X⊆A |X| it su�ces consideringX ∈ {I ∈ I(M) : e /∈ I} =

I(M \ e), since e /∈ A implies e /∈ X. Hence we get

rM (A) = max
X⊆A,X∈I(M)

|X|

= max
X⊆A,X∈I(M\e)

|X|

= rM\e(A).
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(2) It is rM (A) = maxX⊆A,X∈I(M) |X| = |B| for a B ∈ I(M). Since e ∈ E is not a loop

ofM and e ∈ A, e is not a loop ofA and one can chooseB such that e ∈ B. Since the
independent sets of the contraction are I(M/e) = {I ⊆ C \ e : C ∈ B(M), e ∈ C},
it follows that B \ e ∈ I(M/e). Moreover, |B \ e| = maxX⊆A\e,X∈I(M/e) |X| =

rM/e(A \ e). So we get

rM (A) = |B|

= |B \ e|+ |e|

= rM/e(A \ e) + 1.

(3) If e ∈ E is an isthmus of M , then for every basis B of M , B \ e is the greatest

independent set ofM contained in E \e. The converse also holds if e is an isthmus.

If e is not an isthmus, it is not in every basis of M and thus one can �nd a basis

of M contained in E \ e.
Since the cardinality of the greatest independent set of M contained in E \ e is

|B \ e| = |B| − 1 if e is an isthmus, it is rM (E \ e) = rM (M) − 1. The assertion

follows with part (1).

If e is not an isthmus of M , then the above mentioned equicardinality of the bases

of M and M \ e implies rM (M) = rM\e(M \ e).

(4) An element e ∈ E is a loop of M if and only if it is not contained in any basis of

M . If e ∈ E is a loop of M , the contraction M/e is de�ned as the deletion M \ e.
In this case it is B(M/e) = B(M \e) = {B ∈ B(M) : e /∈ B} = B(M) and it follows

rM (M) = rM/e(M/e) if and only if e is a loop of M .

If e is not a loop of M , the bases of M/e are B(M/e) = {B \ e : B ∈ B(M), e ∈ B}
and thus rM/e(M/e) = rM (M)− 1.

�

Lemma 1 (concluded from [2, Proposition 4.1.]). Let M = (E, I) be a matroid.

Then F ⊆ E \ e is a �at in M/e if and only if F ∪ e is a �at in M .

Proof. We �rst assume that e ∈ E is not a loop of M . With part (2) of Proposition 6

it follows that

F = clM/e(F ) = {x ∈ E \ e : rM/e(F ∪ x) = rM/e(F )}

= {x ∈ E \ e : rM (F ∪ e ∪ x) = rM (F ∪ e)}

= clM (F ∪ e) \ e,
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which is equal to

F ∪ e = {x ∈ E : rM (F ∪ e ∪ x) = rM (F ∪ e)}

= clM (F ∪ e).

We now assume that e ∈ E is a loop of M . Since in this case M/e is de�ned as M \ e it
follows with part (1) of Proposition 6 that

F = clM/e(F ) = clM\e(F ) = {x ∈ E \ e : rM\e(F ∪ x) = rM\e(F )}

= {x ∈ E \ e : rM (F ∪ x) = rM (F )}.

Since e is a loop of M and hence it is not in any independent set, this equals

F ∪ e = {x ∈ E : rM (F ∪ x) = rM (F )}

= {x ∈ E : rM (F ∪ e ∪ x) = rM (F ∪ e)}

= clM (F ∪ e)

�

Corollary 4. It is nM\e(M \ e) = nM (M)− 1 and nM/e(M/e) = nM (M).

Corollary 5. Let M = (E, I) be a matroid and e ∈ E a nonfactor of M . Then all

p-element subsets of E are independent in M if and only if all p-element subsets of E \ e
are independent in M \e and all (p−1)-element subsets of E \e are independent in M/e.

Proof. By Proposition 6.(1), for A ⊆ E \ e with |A| = p it is rM (A) = rM\e(A), thus

A is independent in M if and only if it is independent in M \ e. If e ∈ A ⊆ E with

|A| = p then A is independent in M if and only if A \ e is independent in M/e, since by

Proposition 6.(2) it is p = rM (A) = rM/e(A \ e) + 1 if and only if rM/e(A \ e) = p− 1. �

Lemma 2 (Basic Properties, adapted in a corrected form from [4]). Let M be a

matroid and T (M ;x, y) =
∑

i,j bijx
iyj its Tutte polynomial. Then the following basic

properties hold:

(1) b00 = 0 if |E| ≥ 1

(2) If |E| ≥ 2 then b10 > 0 if and only if M is connected.

(3) If M is connected and |E| ≥ 2 then neither x nor y are factors of T (M ;x, y).
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(4) If M is connected then in T (M ;x, y) it is

(i)

bij =

0 i ≥ r(M), j ≥ 1 or i > r(M), j = 0

1 i = r(M), j = 0

(ii)

bij =

0 i ≥ 1, j ≥ n(M) or i = 0, j > n(M)

1 i = 0, j = n(M).

Proof. If e is a nonfactor of an arbitrary matroidM then by Theorem 1 it is T (M ;x, y) =

T (M \ e;x, y) + T (M/e;x, y). Let the coe�cients of T (M \ e;x, y) and T (M/e;x, y) be

b′ij and b
′′
ij respectivley.

(1) For an inductive proof we consider a matroid M with E = {e}. Then e is either

(i) a loop or (ii) an isthmus, hence the Tutte polynomial is (i) T (M ;x, y) =

(x−1)cr(∅)(y−1)n(∅)+(x−1)cr(e)(y−1)n(e) = y or analogously (ii) T (M ;x, y) = x.

In both cases the constant term equals zero.

Assume that |E| = n and that there is a nonfactor e of M . Then b00 = b′00 + b′′00
and since the deletion and the contraction are de�ned on the ground set E \ e, the
induction hypothesis holds for b′00 and b′′00 and thus b00 = 0.

If M does not contain a nonfactor, it is a pre-Boolean algebra Bnm with Tutte

polynomial xnym by Proposition 3, which means that b00 = 0.

(2) Let M be connected and |E| = 2. The only matroid satisfying the conditions has

the Tutte polynomial T (M ;x, y) = x+ y by the Remark after Proposition 2. Since

b10 = 1 > 0, the base clause is proven.

Now assume that M is a connected matroid with |E| > 2. Since M is connected

there is a nonfactor in E and one may apply the Deletion-Contraction Formula

such that T (M ;x, y) = T (M \ e;x, y) + T (M/e;x, y). Since the ground sets of

M \ e and M/e have size |E| − 1, the induction hypothesis holds for the latter and

b′10, b
′′
10 > 0. From this it follows that b10 = b′10 + b′′10 > 0.

We prove the other direction by contraposition. Therefore letM be a matroid with

|E| ≥ 2, which is not connected. We show that this implies b10 = 0. Since M is

not connected it is the direct sum of two matroids M1 and M2 with ground sets

≥ 1. Hence the Tutte polynomial of M is T (M ;x, y) = T (M1;x, y)T (M2;x, y) by

Proposition 1. Let b
(1)
ij and b

(2)
ij be the Tutte coe�cients ofM1 andM2 respectively,
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then

b10 = b
(1)
10 · b

(2)
00 + b

(1)
00 · b

(2)
10

= b
(1)
10 · 0 + 0 · b(2)10

= 0,

since by (1) it is b
(1)
00 = b

(2)
00 = 0.

(3) Let M be a connected matroid with |E| ≥ 2. That implies on the one hand by (2)

that b10 > 0 and on the other hand by Corollary 3 that the dual M∗ is connected.

By Corollary 2 it is T (M ;x, y) = T (M∗; y, x) and thus b01 = b10 > 0. From this it

follows that neither x nor y are factors of T (M ;x, y), since the terms x and y with

coe�cients unequal zero appear in the Tutte polynomial.

(4) We make an inductive proof on the size of the ground set of the connected matroid

M . For the base clause we consider the two matroids with ground set {e}, namely

M1 = ({e}, {e}) and M2 = ({e}, ∅). Since M1 = B1, the Boolean algebra with one

isthmus the Tutte polynomial is T (M1;x, y) = x. Analogously it is M2 = B0,1 and

hence T (M2;x, y) = y. With r(M1) = n(M2) = 1 and r(M2) = n(M1) = 0 the

Tutte coe�cients ful�l the required conditions thus we may now assume thatM is a

connected matroid with |E| ≥ 2. AsM is a connected matroid with more than one

element, there exists a nonfactor of M. Thus we may apply the Deletion-Contraction

Formula to T (M ;x, y). We get T (M ;x, y) = T (M\e;x, y)+T (M/e;x, y) and hence

bij = b′ij + b′′ij .

(i) First we consider the case i ≥ rM (M) and j ≥ 1. Then with Proposition 6

by induction hypothesis it is b′ij = 0 for i ≥ rM\e(M \ e) = rM (M) and j ≥ 1

and b′′ij = 0 for j ≥ 1 and i ≥ rM/e(M/e) = rM (M) − 1. This implies that

b′′ij = 0 for j ≥ 1 and i ≥ rM (M) and thus we get bij = 0.

Now let i > rM (M) and j = 0. By the de�nition of the Tutte polynomial the

highest power of (x− 1) and thus x is rM (M), which equals crM (∅). Thus all
coe�cients of T (M ;x, y) equal 0 if i > rM (M).

For the next case, let i = r(M) and j = 0. Then it is with the previous case
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and Proposition 6

brM (M),0 = b′rM (M),0 + b′′rM (M),0

= b′rM\e(M\e),0︸ ︷︷ ︸
=1 by ind. hyp.

+ b′′rM/e(M/e)+1,0︸ ︷︷ ︸
=0

= 1.

(ii) For proving part (ii) we proceed in the same way as in part (i).

Considering the case i ≥ 1 and j ≥ n(M) we get by induction hypothesis

and Corollary 4 that b′ij = 0 for i ≥ 1 and j ≥ nM\e(M \ e) = nM (M) − 1.

Moreover it follows that b′′ij = 0 for i ≥ 1 and j ≥ nM/e(M/e) = nM (M).

That implies that bij = 0 for i ≥ 1 and j ≥ nM (M).

Now let i = 0 and j > nM (M). By the de�nition of the Tutte polynomial

the highest power of (y − 1) and thus y is nM (M). Thus all coe�cients of

T (M ;x, y) equal 0 if i > nM (M).

For the last case, let i = 0 and j = nM (M). Then it is with the previous case

and Corollary 4

b0,nM (M) = b′0,nM (M) + b′′0,nM (M)

= b′0,nM\e(M\e)+1︸ ︷︷ ︸
=0

+ b′′0,nM/e(M/e)︸ ︷︷ ︸
=1 by ind. hyp.

= 1.

�

Lemma 3 (stated in [2, Lemma 6.2.]). LetM = (E, I(M)) be a matroid with rM (M) = n

and let e ∈ E be a nonfactor.

If fkjn counts the �ats of corank k and nullity j in a matroid of rank n, then

fkjn (M) = fkjn (M \ e) + fkjn−1(M/e)− f̄k,j+1
n−1 (M/e), (1)

where f̄ counts only those closed sets of M/e, which are not closed in M .

In particular, if e is a nonfactor of all �ats of corank k and nullity j + 1 in M , then

f̄k,j+1
n−1 (M/e) = fk,j+1

n−1 (M/e).

Proof (adapted from [2, Proof 6.2.]). First, we consider the in particular -part of the

Lemma. We show that a set F ⊆ E \ e cannot exist which is both closed in M/e and
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in M if e is a nonfactor of F in M . By Lemma 1, F is a closed set in M/e if and only

if F ∪ e is closed in M . Assume that F is a �at in M , then rM (F ∪ e) > rM (F ). This

statement is true if and only if e is in every basis of F ∪ e, which means that e is an

isthmus of F ∪ e. That is a contradiction to the assumption that e is a nonfactor of all

�ats of M .

We denote equation (1) by (a) = (b) + (c) − (d) and consider the contributions of the

di�erent parts subsequently.

Flats of M of corank k and nullity j either contain e or do not contain e. The number

of �ats of M containing e is equal (c) by Lemma 1.

We now consider the �ats F ⊆ E \ e of M \ e of corank k and nullity j that are counted

in (b). By Proposition 6.(1) it is

F = clM\e(F ) = {x ∈ E \ e : rM\e(F ∪ x) = rM\e(F )}

= {x ∈ E \ e : rM (F ∪ x) = rM (F )}

= clM (F ) \ e.

On the one hand, the �ats of M \ e counted in (b) are �ats of M that do not contain

e and thus are counted in (a) since F = clM (F ) \ e = clM (F ). On the other hand, the

other �ats ofM \e counted in (b) are those subsets F ⊆ E \e such that e ∈ clM (F ). This

means that F ∪ e is closed in M but F is not, which follows from the equation above.

Particularly, the closure of F in M is F ∪ e and hence e is not an isthmus of F ∪ e. With

the di�erent parts of Proposition 6 it is

k = crM\e(F ) = rM\e(M \ e)− rM\e(F )

(1),(3)
= rM (M)− rM (F )

= rM (M)− rM (F ∪ e)
(2),(4)

= rM/e(M/e) + 1− (rM/e(F ) + 1)

= rM/e(M/e)− rM/e(F )

= crM/e(F ),

and with rM/e(F ) = rM (F )− 1 = rM\e(F )− 1 as in the equation above it is
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nM/e(F ) = |F | − rM/e(F )

= |F | − rM\e(F ) + 1

= j + 1.

These subsets F with corank k and nullity j + 1 in M/e are exactly those sets counted

in (d). �

Theorem 3 (stated in [2, Theorem 6.3.]). Let M = (E, I(M)) be a matroid of rank

n with Tutte polynomial T (M ;x, y) =
∑

i,j bijx
iyj . If all p-element subsets of E are

independent, then the number of �ats of M of corank k and nullity j is counted for all j

and for k ≥ n− p or k = 0 by

fkjn (M) =
n∑
s=k

n−s∑
t=0

(−1)t
(
n− s
t

)(
s

k

)
bs,j+t. (2)

In particular, this gives for k > n− p : fkjn (M) = δ(0, j)
(
n
k

)
.

Proof (based on [2, Proof 6.3.]). Let i ∈ {1, . . . , p}. For k = n − (p − i) all subsets of

E with corank k and thus rank p − i have nullity 0, since all (p − i)-element subsets of

E are independent by assumption. Furthermore, all subsets with cardinality p − i for
1 ≤ i ≤ p are closed in M , since all p− i+ 1 subsets are independent in M . This means

that there are no �ats F of M with crM (F ) = k > n− p and nM (F ) 6= 0.

Hence the number of �ats with corank k, which means rank and cardinality equals n−k,
is
(
n

n−k
)
. All in all we get fkjn (M) = δ(0, j)

(
n
k

)
if k > n− p.

To show that equation (2) holds for all k ≥ n − p and k = 0, we use induction on the

number of nonfactors of M .

We consider the matroid with zero nonfactors, the pre-Boolean algebra Bnm. It is

r(Bnm) = n and n(Bnm) = |Bnm| − n = m. A �at of Bnm is a subset F = Bn′m

with n′ ≤ n. Its nullity is n(F ) = n′ + m − n′ = m. Thus all �ats of Bnm have nullity

m. With k = cr(F ) = r(Bnm) − r(Bn′m) = n − n′ it is fkjn = δ(j,m)
(
n
n′

)
= δ(j,m)

(
n
k

)
.

Considering the Tutte polynomial T (Bnm;x, y) = xnym we see that bs,j+t 6= 0 if and

only if s = n and t = m− j. In this case we get

(−1)0
(

0

m− j

)(
n

k

)
=

(
n

k

)
δ(j,m) = fkjn (Bnm)

and the base clause is proved.
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Before conducting the induction step, we �rst look at the size of the independent sets of

M \ e and M/e to extend the induction hypothesis to the latter.

By Corollary 5 all p-element subsets of E are independent in M if and only if all p-

element subsets of E \ e are independent in M \ e and all (p− 1)-element subsets of E \ e
are independent in M/e. Therefore, we obtain for M \ e that k ≥ n − p and for M/e

that k ≥ (n− 1)− (p− 1) = n− p. Hereby is k the di�erence of the rank of the matroid

and ρ, where all ρ-element subsets of the matroid are independent.

We now assume that (2) is proved for matroids with less than q > 0 nonfactors and

considerM with q nonfactors including e. Remark that ifM has q nonfactors thenM \e
and M/e have less than q nonfactors and we can assume that the induction hypothesis

(2) holds for M \ e and M/e. In the following, we will use the recursion (1) with f̄

replaced with f . For this reason we show:

Claim:

All closed sets with corank k and nullity j+1 ofM/e are not closed inM and thus f = f̄ .

Proof of the claim:

By Lemma 1, F ⊆ E \ e is a �at in M/e if and only if F ∪ e is a �at in M . But since e

is a nonfactor of M , e is not an isthmus of the �at F ∪ e in M and rM (F ∪ e) = rM (F ),

which means that F is not closed in M .�

With T (M \ e;x, y) =
∑
b′ijx

iyj and T (M/e;x, y) =
∑
b′′ijx

iyj we get with (1) and

the Deletion-Contraction Formula at (∗):

fkjn (M) = fkjn (M \ e) + fkjn−1(M/e)− fk,j+1
n−1 (M/e)

= fkjn (M \ e) +
n−1∑
s=k

n−s∑
t=0

[
(−1)t

(
n− s− 1

t

)(
s

k

)
b′′s,j+t − (−1)t−1

(
n− s− 1

t− 1

)(
s

k

)
b′′s,j+t

]

=

n∑
s=k

n−s∑
t=0

(−1)t
(
n− s
t

)(
s

k

)
b′s,j+t +

n−1∑
s=k

n−s∑
t=0

(−1)t
(
n− s
t

)(
s

k

)
b′′s,j+t

=

n∑
s=k

n−s∑
t=0

(−1)t
(
n− s
t

)(
s

k

)(
b′s,j+t + b′′s,j+t

)
−
(
n

k

)
b′′nj

(∗)
=

n∑
s=k

n−s∑
t=0

(−1)t
(
n− s
t

)(
s

k

)
bs,j+t,

since b′′nj = 0 by the properties of the Tutte coe�cients and rM/e(M/e) = n− 1. �
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Theorem 4 (stated in [2, Theorem 6.6.]). If M = (E, I) is a matroid with |E| ≥ n and

Tutte polynomial T (M ;x, y) =
∑

ij bijx
iyj, then the following identity holds among the

coe�cients bij:

In(M) =
n−1∑
s=0

n−s−1∑
t=0

(−1)t
(
n− s− 1

t

)
bst = 0.

Proof (adapted from [2, Proof 6.6.]). It su�ces to show that In(M) = 0 for all M with

|E| = n. For |E| = k ≥ n we �rst consider the pre-Boolean algebra Bij with i + j ≥ n.

The coe�cients involved in In are those bst such that n− s− 1 ≥ t, which is equivalent

to s+ t < n. The only coe�cient unequal zero in T (M ;x, y) is bij , but i+ j ≥ n. Hence
In(Bij) = 0 holds for all pre-Boolean algebras Bij with i + j ≥ n elements. The base

clause is proven for a matroid with zero nonfactors. Now consider a matroid M with

|E| = k + 1 > n, that is not a pre-Boolean algebra. Thus it contains a nonfactor e ∈ E.
By the Deletion-Contraction Formula, it is T (M ;x, y) = T (M \ e;x, y) + T (M/e;x, y)

with |M \ e| = |M/e| = |E| − 1. Hence the induction hypothesis holds for the two latter

polynomials and we get In(M) = In(M \ e) + In(M/e) = 0 + 0 = 0.

We now consider a matroid M on a n-element ground set and assume that r(M) = n′

and n(M) = m′ with n′ +m′ = n. If m′ = 0, then M = Bn and In(Bn) = 0 because the

only coe�cients involved in In(Bn) are equal to zero. So we assumem′ > 0. The only �at

of M of corank 0 is M and its nullity equals m′. Hence f0,in (M) = 0 for 1 ≤ i ≤ m′ − 1.

This implies

0 =

m′−1∑
i=0

(
m′ − 1

i

)
f0,in

(2)
=

n′∑
s=0

m′−1∑
i=0

n′−s∑
t=0

(−1)i+t
(
m′ − 1

i

)(
n′ − s
t

)
bs,i+t

j:=i+t
=

n′∑
s=0

n−s−1∑
j=0

(−1)j
j∑
t=0

(
m′ − 1

j − t

)(
n′ − s
t

)
bsj

(∗)
=

n′∑
s=0

n−s−1∑
j=0

(−1)j
(
n− s− 1

j

)
bsj

=

n−1∑
s=0

n−s−1∑
j=0

(−1)j
(
n− s− 1

j

)
bsj

= In(M), since bsj = 0 for all s > n′.
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The equality (∗) holds by Vandermonde's identity

j∑
t=0

(
a

j − t

)(
b

t

)
=

(
a+ b

j

)

with a = m′ − 1, b = n′ − 1 and hence a+ b = m′ + n′ − s+ 1 = n− s− 1. �

Corollary 6 (stated in [4, Lemma 1]). Let M be a matroid with |E| = m and Tutte

polynomial T (M ;x, y) =
∑
bijx

iyj. Then

k∑
s=0

k−s∑
t=0

(−1)t
(
k − s
t

)
bst = 0 (Bk)

holds for k ∈ {0, 1, . . . ,m− 1}.

Proof. We obtain the equations (Bk) by setting k := n − 1 in the identity In(M) in

Theorem 4. �

5 Proof of Brylawski's Conjecture

This section is adapted from [4].

Let M = (E, I) be a connected matroid with |E| = m and let T (M ;x, y) =
∑
bijx

iyj

be its Tutte polynomial. In order to obtain a contradiction, we assume that there is a

non-trivial factorization

T (M ;x, y) = A(x, y)C(x, y) (3)

with A(x, y) =
∑
aijx

iyj and C(x, y) =
∑
cijx

iyj .

Since b00 = 0 by Lemma 2.(1), either a00 = 0 or c00 = 0. We assume that a00 = 0.

According to Lemma 2.(2) it is b10 > 0, so we get 0 < b10 = a00c10 + a10c00 = a10c00 and

thus by assumption c00 6= 0. In the following we will prove that c00 = 0 to obtain the

desired contradiction.

De�nition. Let P (x, y) =
∑
pijx

iyj , where P (x, y) does not consist of mixed terms

only. Then we de�ne

rP (x) := max{i : pi0 6= 0}, rP (y) := max{j : p0j 6= 0}

and

m(P ) := rP (x) + rP (y).
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Thus rP (x) and rP (y) denote the highest power of the terms x and y, respectively.

As M is connected it follows from Lemma 2.(3) that neither x nor y are factors of

T (M ;x, y). Therefore they are not factors of A(x, y) and C(x, y) neither and we may

apply the previous de�nitions to A and C.

By Lemma 2.(4) it follows that rT (x) = rM (M) and rT (y) = nM (M) and thus with (3)

it is m = m(T ) = m(A) + m(C). Since we are assuming a non-trivial factorization of

T (M ;x, y) we get that rA(x), rA(y) ≤ m(A) < m.

Lemma 4. Let A(x, y) be the polynomial in (3). Then the following holds:

If i ≥ rA(x) or j ≥ rA(y), then aij = 0 except if i = rA(x) and j = 0 or i = 0 and

j = rA(y).

Remark. The above-mentioned property for the polynomial A(x, y) is a property, which

holds for a Tutte polynomial. This was proven in Lemma 2.(4).

Proof. Let α := max{i : aij 6= 0 for some j} and β := max{j : aαj 6= 0}. Analogously

let α′ and β′ be de�ned for the polynomial C(x, y). Thus the monomials aαβx
αyβ and

cα′β′xα
′
yβ

′
are the terms of maximum degree of x in A(x, y) and C(x, y) respectively. Its

product aαβcα′β′xα+α
′
yβ+β

′
is the term with maximum degree of x in T (M ;x, y). By

Lemma 2.(4) it follows that α+α′ = r(M) and β+β′ = 0. Since β, β′ ≥ 0 we get β = 0.

This implies that α = max{i : aij 6= 0 for some j} = max{i : ai0 6= 0} = rA(x). Thus,

the maximum degree of x in A(x, y) has the coe�cient arA(x),0.

Considering analogously γ := max{j : aij 6= 0 for some i} and δ := max{i : aiγ 6= 0} for
A(x, y) and γ′ and δ′ for C(x, y), we get that aδγcδ′γ′x

δ+δ′yγ+γ
′
is the term of maximum

degree of y in T (M ;x, y). With Lemma 2.(4) it follows that γ+γ′ = n(M) and δ+δ′ = 0.

Thus δ = 0 and γ = rA(y), which means that the term of maximum degree of y has the

coe�cient a0,rA(y). �

For k = 0, . . . ,m(A) we de�ne

k∑
s=0

k−s∑
t=0

(−1)t
(
k − s
t

)
ast = 0. (Ak)

The equation (Ak) is (Bk), only with bst replaced with ast, the coe�cients of A(x, y).

Since we do not assume A(x, y) being a Tutte polynomial we do not know whether the

equations (Ak) hold or not.

Lemma 5. Let A(x, y) =
∑
aijx

iyj be the polynomial in (3). Then there is at least one

l ∈ {rA(x), . . . ,m(A)} such that the equation (Al) does not hold.
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Proof. For rA(x) ≤ k ≤ m(A) and i ≥ 0 let the equations (Aki) be

k∑
s=0

k−s∑
t=0

(−1)t+i
(
k − s
t

)
as,t+i = 0. (Aki)

Remark that the equation (Ak0) is the equation (Ak).

Claim:

For i > 0 and rA(x) < k ≤ m(A) the following holds for the left-hand side of the

equations:

(Ak−1,i) = (Ak,i−1)− (Ak−1,i−1) (4)

Proof of the claim:

In the following let i > 0 and k > rA(x).

The left-hand side of the equation (Ak,i−1) is

k∑
s=0

k−s∑
t=0

(−1)t+i−1
(
k − s
t

)
as,t+i−1. (5)

Using the fact that
(
k−s
t

)
=
(
k−1−s

t

)
+
(
k−1−s
t−1

)
and assuming

(
a
−b
)

= 0 for a ≥ 0 and

b > 0 and
(
a
b

)
= 0 for a < b, (5) can be rewritten in the following way:

k∑
s=0

k−s∑
t=0

(−1)t+i−1
(
k − s
t

)
as,t+i−1

=

k∑
s=0

k−s∑
t=0

(−1)t+i−1
[(
k − 1− s

t

)
+

(
k − 1− s
t− 1

)]
as,t+i−1 + (−1)i−1ak,i−1

The last term appears because
(
0
0

)
cannot be decomposed into two binomial coe�cients.

Since k > rA(x) we have ak,i−1 = 0 by Lemma 4. Using this it is

=

k−1∑
s=0

k−1−s∑
t=0

(−1)t+i−1
(
k − 1− s

t

)
as,t+i−1 +

k−1∑
s=0

k−1−s∑
t=1

(−1)t−1+i
(
k − 1− s
t− 1

)
as,t−1+i

=
k−1∑
s=0

k−1−s∑
t=0

(−1)t+i−1
(
k − 1− s

t

)
as,t+i−1 +

k−1∑
s=0

k−1−s∑
t=0

(−1)t+i
(
k − 1− s

t

)
as,t+i.

The terms of the last row are the left-hand sides of the equations (Ak−1,i−1) and (Ak−1,i),
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respectively. So we can write symbolically

(Ak,i−1) = (Ak−1,i−1) + (Ak−1,i),

which is the claimed relation.�

We assume now that all equations (Ak) hold for rA(x) ≤ k ≤ m(A), which is lead-

ing to a contradiction. We now consider the equation (ArA(x),rA(y)). Its left-hand side

is

(ArA(x),rA(y)) =

rA(x)∑
s=0

rA(x)−s∑
t=0

(−1)rA(y)+t

(
rA(x)− s

t

)
as,rA(y)+t

= (−1)rA(y)

(
rA(x)

0

)
a0,rA(y)

= ±a0,rA(y)

6= 0,

since by Lemma 4 the only term aij 6= 0 involved in this equation is a0,rA(y).

Otherwise, by using the recursion (4) we can express (ArA(x),rA(y)) 6= 0 as the sum of

equations (Ak0) for rA(x) ≤ k ≤ m(A) = rA(x) + rA(y). But we are assuming that

these equations (Ak0) all equal zero. This implies (ArA(x),rA(y)) = 0 and therefore we

obtain a contradiction. This means that there exists a k ∈ {rA(x), . . . ,m(A)} such that

(Ak0) = (Ak) does not hold. �

Lemma 6. If the coe�cients aij do not satisfy equation (Ak) for some k ≤ m(A) then

c00 = 0.

Proof. Let (Ak) be the �rst equation that does not hold. Since k ≤ m(A) < m, the

equation (Bk) holds. With the fact

bst =
∑
h≤s

∑
l≤t

chlas−h,t−l

we can rewrite the left-hand side of (Bk) in the following way:
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k∑
s=0

k−s∑
t=0

(−1)t
(
k − s
t

)
bst =

k∑
s=0

k−s∑
t=0

(−1)t
(
k − s
t

)∑
h≤s

∑
l≤t

chlas−h,t−l

=c00

k∑
s=0

k−s∑
t=0

(−1)t
(
k − s
t

)
ast

+
∑

0<h+l≤k
chl

[
k∑
s=h

k−s∑
t=l

(−1)t
(
k − s
t

)
as−h,t−l

]
. (6)

The coe�cients of chl are similar to the left-hand side of the equations (Ak). In particular,

the coe�cient of c00 is exactly the left-hand side of (Ak). To analyze these coe�cients

of chl we de�ne the equations (A′ni) as follows:

n−i∑
s=0

n−i−s∑
t=0

(−1)t+i
(
n− s
t+ i

)
ast = 0. (A′ni)

Remark that (A′n0) is the equation (An), which we are assuming to hold for 0 ≤ n < k.

We will get the coe�cient of chl in (6), if we change the indices s+ h→ s and t+ l→ t

in the left-hand side of the equation (A′k−h,l). Moreover, the binomial
(
k−s
t

)
= 0 for

s > k − l and t ≥ l. So we can write symbolically

(Bk) = c00(Ak) +
∑

0<h+l≤k
chl(A

′
k−h,l). (7)

Claim:

The equation (A′ni) holds for 1 ≤ n ≤ k and 1 ≤ i ≤ n.

Proof of the claim:

We use induction on n. If n = 1 then i = 1 is the only possible value for i and (A′11)

reduces to a00 = 0, which was supposed from the beginning. We now assume that the

induction hypothesis holds for all values less than n. By using
(
a
b

)
=
∑a

j=1

(
a−j
b−1
)
we

decompose the left-hand side of the equation (A′ni):
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n−i∑
s=0

n−i−s∑
t=0

(−1)t+i
(
n− s
t+ i

)
ast

=
n−i∑
s=0

n−i−s∑
t=0

(−1)t+i
n−s−t−i+1∑

j=1

(
n− s− j
t+ i− 1

)
ast

=

n−i∑
s=0

n−i−s∑
t=0

n−s−t−i+1∑
j=1

(−1)t+i
(
n− s− j
t+ i− 1

)
ast

= −
n−i+1∑
j=1

(n−j)−(i−1)∑
s=0

(n−j)−(i−1)−s∑
t=0

(−1)t+(i−1)
(

(n− j)− s
t+ (i− 1)

)
ast.

The jth term in the last sum is equal to the left-hand side of the equation (A′n−j,i−1) for

1 ≤ j ≤ n− i+ 1. Hence we obtain the relation

(A′ni) = −
n−i+1∑
j=1

(A′n−j,i−1).

For i = 1 the equations on the right-hand side are (An−1), . . . , (A0), which hold since

n−1 < k. If i > 1 the equations (A′n−1,i−1), . . . , (A
′
i−1,i−1) hold by induction hypothesis,

thus in both cases (A′ni) holds.�

This result implies with equation (7) that (Bk) reduces to c00(Ak) = 0. Since (Ak)

does not hold by assumption it follows that c00 = 0. This contradiction proves this

Lemma and hence Brylawski's Conjecture stated as Theorem 2. �

Remark. Actually, the proof shows that T (M ;x, y) is irreducible even in C[x, y].

6 The Arithmetic Tutte Polynomial

All following de�nitions can be found in [1].

Alternatively to the de�nition of a matroid via independent sets a matroid could be

de�ned as follows.

De�nition. A matroid M = (E, r) is a �nite set E and a rank function r : 2E → N
satisfying

(R1) A ⊆ E implies r(A) ≤ |A|.
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(R2) A ⊆ B ⊆ E implies r(A) ≤ r(B).

(R3) A,B ⊆ E implies r(A ∪B) + r(A ∩B) ≤ r(A) + r(B)

De�nition. LetM = (E, r) be a matroid. If R ⊆ S ⊆ E let [R,S] := {A : R ⊆ A ⊆ S}.
[R,S] is a molecule if S is the disjoint union S = R ∪ F ∪ T for F, T ⊆ E and for each

A ∈ [R,S] it is

r(A) = r(R) + |A ∩ F |.

De�nition. An arithmetic matroid (A) = (M,m) is a matroid M = (E, r) with a

multiplicity function m : 2E → N \ {0} satisfying

(P) For a molecule [R,S] it is

(−1)|T |
∑

A∈[R,S]

(−1)|S|−|A|m(A) ≥ 0.

(M1) A ⊆ E, e ∈ E and r(A ∪ e) = r(A) implies that m(A ∪ e) divides m(A).

(M2) A ⊆ E, e ∈ E and r(A ∪ e) > r(A) implies that m(A) divides m(A ∪ e).

(M3) For a molecule [R,S] it is m(R) ·m(S) = m(R ∪ F ) ·m(R ∪ T ).

De�nition. Let A be an arithmetic matroid. Then its arithmetic Tutte polynomial is

de�ned as

MA(x, y) =
∑
A⊆E

m(A)(x− 1)cr(A)(y − 1)n(A).

Question: Is the arithmetic Tutte polynomial of a connected arithmetic matroid irre-

ducible in Z[x, y]?

This thesis forms the basis of the examination of the question above.

We found out that there are only a few aspects that need to be checked. Actually, some

are already proven. This is on the one hand that the Deletion-Contraction Formula also

holds for arithmetic matroids (see [1]). On the other hand, there is an alternative de�ni-

tion of the arithmetic Tutte polynomial via local external and local internal activity of

molecules in [1], which is similar to the alternative Tutte polynomial. Thus the investi-

gation whether the Basic Properties (stated in Lemma 2) hold for the coe�cients of the

arithmetic Tutte polynomial still remains.
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