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Introduction

In this thesis a partial order on the unitary group of a n dimensional unitary
vector space will be defined, referring to Thomas Brady’s and Colum Watt’s
paper ”A Partial Order on the Orthogonal Group” [BW02]. In [BW02]
Brady and Watt regard a finite dimensional vector space over any field and
the orthogonal group with respect to a symmetric bilinear form instead.

As it is possible to find unitary matrices operating on a vector by trans-
posing its entries, we regard the symmetric group Sn as a subgroup of the
unitary group U(Cn).
We will prove that the partial order being transferred from U(Cn) to Sn is
the same as the one being defined by Brady in reference paper [Bra01] using
the length function of the Cayley Graph, counting the minimum amount of
consecutive transpositions the permutation can be displayed as.

We find that a permutation τ ∈ Sn is lower than or eqal to another
permutation σ ∈ Sn, if and only if each cycle of τ is contained in a cycle
of σ, τ is ordered consistently with σ, and τ has no crossing cycles with
respect to σ. Therefore we define a cycle to be ordered consistently with an-
other permutation without using the ≤ relation, and we give the definition
of crossing cycles not before we have characterized the meaning of a cycle
cτ being lower than or equal to a permutation σ.

We regard S3 and S4 as examples.

The cycle structure of a permutation σ defines a partition of the set
{1, ..., n}. We will denote it {σ}. Since the set Πn of partitions of the set
{1,...,n} has a natural partial order, we consider the subposet of Sn given by
the ”allowable elements” A , so that for each τ and σ ∈ A we have τ ≤ σ if
and only if {τ} ≤ {σ}. We know that the set NCP (n) ⊆ Πn of non crossing
partitions is a partial ordered set and with a meet and join operation it does
form a lattice. Since for h : A → Πn, σ 7→ {σ} it is im(h) = NCP (n), we
can define meet and join for elements of A with regard to the definition for
NCP (n). Finally we prove that the set of allowable elements A with the ≤
relation of Sn and with the given meet and join operation does form a lattice.

We generalize this statement and regard the unitary group over Cn again:
We take a restriction of the unitary matrices to an interval [A,C] with
A,C ∈ U(Cn), A ≤ C, and if we define m := |VC |− |VA|, we find that [A,C]
is isomorphic to the lattice of subspaces of Cm. Using this at the end we get
to a strong version of the Cartan-Dieudonné Theorem, with respect to the
fact that char(C) 6= 2.
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1 A Partial Order on the Unitary Group

Let n ∈ N be a finite number and regard Cn the n-dimensional complex
vector space. The complex scalar product of two complex vectors

a :=

a1...
an

 and b :=

b1...
bn

 is defined via < a, b >:=
n∑
i=1

aib̄i.

The set of matrices {M ∈ Cn×n
∣∣ < Mei,Mei >= 1 ∀i ∈ {1, ..., n} and

< Mei,Mej >= 0 ∀i, j ∈ {1, ..., n}, i 6= j} represents the unitary group
U(Cn) together with the matrix multiplication as its binary operation.

For all A ∈ U(Cn) we define WA := ker(A− I) and VA := im(A− I).
We will write |WA| for dim(WA) and |VA| for dim(VA).

For any subspaces X,Y ⊆ Cn we will write X⊥Y for the unitary direct
sum of X and Y and we define X⊥ := {y ∈ Cn

∣∣∀x ∈ X :< x, y >= 0} as
the subspace of all vectors being unitary to X.

Proposition 1.1 (Brady and Watt, Reference [BW02], Proposition 1)
For all A ∈ U(Cn) we get the following states:

1. WA is the +1-eigenspace of fA : Cn → Cn, x 7→ Ax.

2. Cn = VA⊥WA.

Proof.

1. x ∈ WA ⇔ x ∈ ker(A− I)⇔ (A− I)x = 0⇔ Ax = x⇔ x ∈ EfA(1),
where EfA(1) := {x ∈ Cn

∣∣fA(x) = 1 · x} is the +1-eigenspace of fA.

2. This can be proofed analoguely to reference [BW02] with the complex
scalar product instead of the real scalarproduct:

• The subspaces are unitary: Regard any v ∈ VA, w ∈ WA. Since
VA = im(A− I) there exists z ∈ Cn so that (A− I)z = v. We get

< v,w > = < v, (A− I)z >=< v,Az − z >=< v,Az > − < v, z >

= < Av,Az > − < v, z >= 0

since A ∈ U(Cn)⇔< Ax,Ay >=< x, y > ∀x, y ∈ Cn.

• Since the subspaces are unitary and the dimensions are comple-
mentary we get Cn = VA ⊕WA.

3



�

Corollary 1.2

1. V ⊥A = WA and W⊥A = VA

2. |VA| = n− |WA| and |WA| = n− |VA|

3. WA ∩WB ⊆WAB

Proof. The first and the second state follow directly from Proposition 1.1.2.
Regard x ∈WA∩WB. Using Proposition 1.1.1. we get for all x ∈WA∩WB :
Ax = x and Bx = x. It follows (AB)x = A(Bx) = Ax = x, which means
x ∈WAB.

�

Lemma 1.3 For any Subspaces X,Y ⊆ Cn:

1. (X + Y )⊥ = X⊥ ∩ Y ⊥ and X⊥ + Y ⊥ = (X ∩ Y )⊥

2. |X|+ |Y | = |X + Y |+ |X ∩ Y |

Proof.

1. For any z ∈ Cn we have z ∈ (X + Y )⊥ ⇔ ∀s ∈ X + Y :< z, s >= 0⇔
∀x ∈ X ∀y ∈ Y :< z, x+ y >= 0⇔ ∀x ∈ X ∀y ∈ Y :< z, x > +
< z, y >= 0. Because 0 ∈ X and 0 ∈ Y we get, that this is equivalent
to ∀x ∈ X :< z, x >= 0 ∧ ∀y ∈ Y :< z, y >= 0, which exactly means
z ∈ X⊥∩Y ⊥. The other state follows directly by regarding X⊥ instead
of X and Y ⊥ instead of Y and using (X⊥)⊥ = X and (Y ⊥)⊥ = Y .
It is (X⊥)⊥ = X, because Cn = X ⊕ X⊥ = (X⊥)⊥ ⊕ X⊥ ([Fis79],
”Orthonormalisierungssatz”, Corollary 2).

2. A proof for this common state can be found e.g. in reference [Fis79]
(”Dimensionsformel für Summen”).

�

Proposition 1.4 For all A,B ∈ U(Cn): |VAB| ≤ |VA|+ |VB|.

Proof. Regard

|VA|+ |VB| =
↑

Corollary 1.2.2

n− |WA|+ n− |WB| = 2n− (|WA|+ |WB|)

=
↑

Lemma 1.3.2

2n− (|WA +WB︸ ︷︷ ︸
⊆Cn

|+ |WA ∩WB︸ ︷︷ ︸
⊆WAB

Corollary 1.2.3

|)

≥ 2n− (n+ |WAB|) = n− |WAB| =
↑

Corollary 1.2.2

|VAB|
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Definition 1.5 (Brady and Watt, Reference [BW02], Definition 1) For all
A ∈ U(Cn) and for all B ∈ U(Cn) we define

A ≤ C :⇔ |VC | = |VA|+ |VA−1C |

Proposition 1.6 (Brady and Watt, Reference [BW02], Proposition 3)
The relation ≤ is a partial order on U(Cn).

Proof.

• Reflexivity: It is |VI | = |im(I − I)| = 0 ⇔ for all A ∈ U(Cn):
|VA| = |VA|+ |VI | = |VA|+ |VA−1A| ⇔ ∀A ∈ U(Cn) : A ≤ A.

• Antisymmetry: Suppose A ≤ C and C ≤ A.
Then |VC | =

↑
A≤C

|VA|+ |VA−1C | =
↑

C≤A

|VC |+ |VC−1A|+ |VA−1C |.

This gives VC−1A = VA−1C = {0} and A = C.

• Transitivity: Suppose A ≤ B and B ≤ C. Then

|VC | = |VAA−1C | ≤
↑

Proposition 1.4

|VA|+ |VA−1C |

= |VA|+ |VA−1BB−1C |
≤
↑

Proposition 1.4

|VA|+ |VA−1B|+ |VB−1C |

=
↑

A≤B∧B≤C

|VA|+ (|VB| − |VA|) + (|VC | − |VB|) = |VC |.

So we have actually equality for every line, which gives |VC | = |VA|+
|VA−1C | and further A ≤ C.

�

Corollary 1.7 (Brady and Watt, Reference [BW02], Corollary 1)
For all A ∈ U(Cn), for all C ∈ U(Cn):

A ≤ C ⇔ VC = VA ⊕ VA−1C

Proof. Define B := A−1C ∈ U(Cn). With regard to reference [BW02],
Corollary 1, we show |VAB| = |VA|+ |VB| ⇔ VAB = VA ⊕ VB.
The proof of Proposition 1.4 gives |VA|+ |VB| ≥ |VAB| and further

|VAB| = |VA|+ |VB| ⇔

{
WA +WB = Cn

WA ∩WB = WAB
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Using Lemma 1.3.1 and Corollary 1.2.1 we get that this is equivalent to

⇔

{
VA ∩ VB = {0}
VA + VB = VAB

⇔ VA ⊕ VB = VAB

�

Lemma 1.8 For all A,B ∈ U(Cn): A−1B ∈ U(Cn), BA−1 ∈ U(Cn) and

A ≤ B ⇔ A−1B ≤ B
⇔ BA−1 ≤ B.

Proof. The states A−1B ∈ U(Cn) and BA−1 ∈ U(Cn) are trivial since
U(Cn) is a group.

Since B is invertible, we get |VB−1AB| = |im((B−1AB)− I)|
= |im(B−1(A− I)B)| = |im(A− I)| = |VA|. Using this, we get

A ≤ B ⇔ |VB| = |VA−1B|+ |VA|
= |VA−1B|+ |VB−1AB|
= |VA−1B|+ |V(A−1B)−1B|

⇔ A−1B ≤ B

and

A ≤ B ⇔ |VB| = |VA−1B|+ |VA|
= |VB(A−1B)B−1 |+ |VAB−1B|
= |VBA−1 |+ |V(BA−1)−1B|

⇔ BA−1 ≤ B.

�

Lemma 1.9 For all A,B,C ∈ U(Cn): If A ≤ B ≤ C, then
A−1B ≤ A−1C and B−1C ≤ A−1C.

Proof. (Brady, paper [Bra01], Lemma 3.10) Assume A ≤ B ≤ C. Then:

A ≤ B ⇔ |VB| = |VA|+ |VA−1B| (1)

B ≤ C ⇔ |VC | = |VB|+ |VB−1C | (2)

With transitivity: A ≤ C ⇔ |VC | = |VA|+ |VA−1C | (3)

Inserting (1) into (2) gives |VC | = |VA|+ |VA−1B|+ |VB−1C |. Regarding the
difference with (3) we get

0 = |VA−1B|+ |VB−1C | − |VA−1C |
⇔ |VA−1C | = |VA−1B|+ |V(A−1B)−1A−1C |
⇔ A−1B ≤ A−1C
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which is the first result. Using Lemma 1.8 for Ã := A−1B ∈ U(Cn) and
B̃ := A−1C ∈ Cn we get

Ã−1B̃ ≤ B̃

⇔ B−1AA−1C ≤ A−1C

⇔ B−1C ≤ A−1C

which is the second result.

�

Note: In reference (Brady, paper [Bra01], Lemma 3.9 and Lemma 3.10) one
direction of Lemma 1.8 and Lemma 1.9 are given for the special case of the
symmetric group. One part of Lemma 1.9 is stated in (Brady and Watt, ref-
erence [BW02], Proposition 3) for the partial order on the orthogonal group.

Theorem 1.12 (Brady and Watt, Reference [BW02], Theorem 1) We fix
C ∈ U(Cn). For all subspaces S ⊆ VC there exists a unique A ∈ U(Cn) so
that A ≤ C and VA = S.

In order to prepare the proof for this theorem, we define the subspace
XS := {x ∈ VC

∣∣(C − I)x ∈ S}. Since S ⊆ VC we get (C − I)XS = S. We
now get the following Lemmata:

Lemma 1.10 (Brady and Watt, Reference [BW02], Lemma 1)

XS ⊕ S⊥ = Cn

Proof.

1. Since (C − I) is invertible when restricted to VC = im(C − I), we get
a bijection XS → S, x 7→ (C − I)x. This leads to |XS | = |S|.

2. XS ∩ S⊥ = {0}: Regard any vector in the intersection x ∈ XS ∩ S⊥.
We find some s ∈ S such that Cx = x+ s. Using C ∈ U(Cn) we now
get:

< x, x >=< Cx,Cx >=< x+ s, x+ s >=< x, x > + < s, s >

which leads to < s, s >= 0, and further s = 0. So (C − I)x = 0. Since
(C − I) is an isomorphism when restricted to XS , we get x = 0.

Using 1. we get |S⊥| = n − |S| = n − |XS | and together with 2. we get
XS ⊕ S⊥ = Cn.

�
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Lemma 1.11 (Brady and Watt, Reference [BW02], Lemma 2 and
Lemma 3)
If A ≤ C and VA = S, then WA−1C = WC⊥XS.

Proof.

1. WC⊥XS : This follows since WC⊥VC and XS ⊆ VC .

2. WA−1C ⊆ WC⊥XS : Regard any x ∈ WA−1C . Then A−1Cx = 0 and
Cx = Ax and (C − I)x = (A − I)x. Since Cn = WC⊥VC we find a
unique y ∈ WC and a unique z ∈ VC such that x = y + z. We get
z ∈ XS because of (C − I)z = (C − I)x = (A− I)x ∈ VA = S.

3. |WA−1C | = |WC + XS |: We use A ≤ C ⇔ |VA−1C | = |VC | − |VA| and
|VA| = |XS | and get |WA−1C | = n − |VA−1C | = n − (|VC | − |VA|) =
n−|VC |+|XS | = |WC |+|XS |. Because ofWC∩VC = ∅ andXS ⊆ VC we
get WC∩XS = ∅ and with Lemma 1.3.2 it is |WC |+|XS | = |WC+XS |.

(1.), (2.) and (3.) together give the result.

�

Proof of Theorem 1.12 Because of Lemma 1.10 we can define a matrix
P describing a projection on XS , via Px = x for any x ∈ XS , and Ps = 0
for any s ∈ S⊥.

According to Brady and Watt (Reference [BW02], Lemma 4) we now
define A := I + (C − I)P , and show:

• VA = S: Because of the definitions of A, P and XS we get VA =
im(A− I) = im((C − I)P ) = (C − I)XS = S.

• A ≤ C: For any x ∈ Cn we have for any B ∈ U(Cn): x ∈ WB ⇔
(B − I)x = 0 ⇔ Bx = x ⇔ x = B−1x ⇔ x ∈ WB−1 , and using
Proposition 1.1.2 we also find VB = VB−1 . We further express:

C−1A− I = C−1(I + (C − I)P )− I = C−1 + C−1(C − I)P − I
= C−1 + P − C−1P − I = (C−1 − I) + P (I − C−1)
= (C−1 − I)− P (C−1 − I) = (I − P )(C−1 − I).

So we now get

|WA−1C | = |W(A−1C)−1 | = |WC−1A| = |ker(C−1A− I)|
= |ker((I − P )(C−1 − I))|

Since C−1−I is an isomorhism when restricted to XS , we further have

|ker((I − P )(C−1 − I))| = |ker(I − P )|+ |ker(C−1 − I)|
= |XS |+ |WC | = |S|+ |WC | = |VA|+ |WC |
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and further

|WA−1C | = |WC |+ |VA|
⇔ n− |VA−1C | = n− |VC |+ |VA|
⇔ |VC | = |VA−1C |+ |VA|
⇔ A ≤ C

• A ∈ U(Cn): Regard any x, y ∈ Cn. Using Lemma 1.10 we can find
x = x1 +x2, y = y1 +y2, with unique vectors x1, y1 ∈ XS , x2, y2 ∈ S⊥.
Since the definition of A leads to the identities Ax1 = Cx1, Ax2 = x2,
Ay1 = Cy1 and Ay2 = y2, we can show < Ax,Ay >=< x, y > in the
same way as Brady and Watt (Reference [BW02], Lemma 5).

• A is unique: (Brady, Watt, Reference [BW02], Lemma 4) Suppose
there is an A′ ≤ C and VA′ = S. Then WA′ = V ⊥A′ = S⊥ ⇒ (A− I)s
= 0 ∀s ∈ S⊥. On the other hand Lemma 1.11 gives XS ⊆ WA′−1C ,
such that for all x ∈ XS we have A′−1Cx = 0 which means A′x = Cx.
Since (A′ − I)s = 0 for all s ∈ S⊥ and (A′ − I)x = (C − I)x for all
x ∈ XS , we get A′ − I = (C − I)P = A− I and A′ = A.

�

Corollary 1.13 (Brady and Watt, Reference [BW02], Corollary 2)
If S is an invariant subspace of C, then the unique induced transformation
on S is the restriction of C to S.

Proof. We have S ⊆ VC with (C − I)S = S ⇒ XS = S.
Then by Theorem 1.12 A − I = (C − I)P with P as the projection on S:
P (s+ s′) = s for any s ∈ S and any s′ ∈ S⊥.

�

Corollary 1.14 (Brady and Watt, Reference [BW02], Corollary 3)
If S is a one dimensional subspace of VC , then there exists α ∈ C,
|α| = 1, α 6= 1, such that the unitary transformation induced by C on S is

given by Az =

{
z ,if z ∈ S⊥

αz ,if z ∈ S.

Proof. We have S⊥ = XS and 1 = |S| = |VA| = |im(A − I)| ⇒ ∃α′ ∈
C, α′ 6= 0 : (A − I)x = α′x ∀x ∈ XS ⇒ ∃α ∈ C, α 6= 1 : Ax = αx ∀x ∈ XS .
Since A ∈ U(Cn) we have < Ax,Ay >=< x, y > ∀x, y ∈ Cn. Especially
for x = y = e1 we get 1 =< e1, e1 >=< Ae1, Ae1 >=< αe1, αe1 >= αᾱ <
e1, e1 >= |α|2. So |α| = 1 and α 6= 1.

�
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Note: In reference [BW02] Brady and Watt regard an n-dimensional
vector space over any field F, and the orthogonal group with respect to a
symmetric bilinear form instead of the complex scalar product. Since the
complex scalar product is conjugate linear and not bilinear, we can just fol-
low |α|2 = 1 here, but not α2 = 1 like in reference [BW02]. In [BW02] we
see that if char(F) 6= 2, then it follows α2 = 1, α 6= 1 ⇒ α = −1, so that A
would be the orthogonal reflection in S⊥.

2 The Symmetric Group as a Subgroup of the Uni-
tary Group

Lemma 2.1 The symmetric group Sn, representing the permutations of n
elements, is isomorphic to a subgroup of the unitary group of Cn

Sn < U(Cn)

as the function

f : Sn ↪→ U(Cn)

σ 7→ fσ

with the unitary map

fσ : Cn → Cnx1...
xn

 7→

eσ(1)
∣∣∣∣∣ . . .

∣∣∣∣∣eσ(n)


︸ ︷︷ ︸
=:Mσ

x1...
xn



is a well defined monomorphism.

Proof. We can identify the linear function fσ with the matrix Mσ. The
function f is well defined, because for all σ ∈ Sn the matrix Mσ is unitary.
The function f is injective since distinct permutations τ, σ ∈ Sn give distinct
matrices Mτ 6= Mσ, and so fτ 6= fσ.
We have for all τ, σ ∈ Sn, for all i ∈ {1, ..., n}:

MτMσei = Mτeσ(i) = eτ(j) with j = σ(i)

= eτ(σ(i)) = Mτσei,

which gives f(τσ) = f(τ)f(σ).

�
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Proposition 2.2 We further define W :=<

1
...
1

 > and V := W⊥ and get

1. W is a subspace of WMσ for all σ ∈ Sn.

2. W = WMσ for at least one σ.

3. For all σ ∈ Sn: |WMσ | = 1 if and only if W = WMσ .

Proof.

1. W ≤WMσ as for any σ ∈ Sn and for any k ∈ C we have

Mσ(k

1
...
1

) = Mσ

k...
k

 =

k...
k

 = k

1
...
1

 .

which means k

1
...
1

 ∈WMσ∀k ∈ C.

2. W = WM(12...n)
, as W is the +1-eigenspace of

M(12...n) =

e2
∣∣∣∣∣ e3

∣∣∣∣∣ . . .

∣∣∣∣∣ en

∣∣∣∣∣ e1

.

3. If W = WMσ then |WMσ | = |W | = | <

1
...
1

 > | = 1. The other

direction follows directly from 1.

�

Notes:

• Later we will see that W = WMσ if and only if the permutation σ can
be identified with a n-cycle.

• Using W = WMσ for at least one σ ∈ Sn we get the states of Proposi-
tion 1.1 and Corollary 1.2 also for W and V.
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• Because of Cn = V ⊕W we find for every x ∈ Cn exactly one vx ∈ V
and exactly one wx ∈W with x = vx + wx and get for all σ ∈ Sn
fσ(x) = fσ(vx+wx) =

↑
fσ lin.

fσ(vx)+fσ(wx) =
↑

W≤WMσ 1-eigensp.

fσ(vx)+wx.

This shows, that it is enough to know, how fσ behaves on V ∼= Cn/W .
Instead of fσ we could also regard the function

fσ/W : Cn/W → Cn/W
[x] 7→ [f(x)]

without loss of generality.

3 A Partial Order on the Symmetric Group

Regard the length function

l : Sn → {0, ..., n− 1}
σ 7→ l(σ),

giving the minimum amount of consecutive transpositions the permutation
σ can be represented as.

Definition 3.1 (Brady, Reference [Bra01], Definition 2.1) For all τ, σ ∈ Sn
we define

τ ≤ σ :⇔ l(σ) = l(τ) + l(τ−1σ)

Lemma 3.2 For all σ ∈ Sn it is

l(σ) = |VMσ |.

Proof. Let σ be any permutation of n elements. Without loss of generality
we represent it as σ = (pl(σ)ql(σ)) . . . (p1q1) with pi 6= pj ∧ qi 6= qj ∀i 6= j
and if qj = pi ⇒ j = i+ 1, making up a shortest finite sequence of consecu-
tive transpositions the permutation σ can be displayed as.

We regard |VMσ | = rk(Mσ − I), where rk is the column rank.
We define σ0 := id and σk := (pkqk) . . . (p1q1) for any k ∈ {1, ..., l(σ)}. We
show via induction that rk(Mσk − I) = k for all k ∈ {0, ..., l(σ)}, especially
for k = l(σ).

1. Base Case k=0: rk(Mσ0 − I) = rk(I − I) = 0.

12



2. Induction Hypothesis: rk(Mσk − I) = k for some k ∈ {0, ..., l(σ)− 1}.

3. Induction Step k → k+ 1: We show rk(Mσk+1
− I) = rk(Mσk − I) + 1.

Let L be any linearly independent system of column vectors of Mσk−I
with |L| = rk(Mσk − I). Then L is a basis for im(Mσk − I) = VMσk

.

We define a := max{{1} ∪ {i ∈ {2, ..., k + 1}
∣∣qi 6= pi−1}}.

• If a = k + 1, then σk+1 = (pk+1qa) (pkqk)...(p1q1)︸ ︷︷ ︸
=σk

with qa 6= pk.

We get

→ σk(pi) = σk+1(pi) ∀i ∈ {1, ..., k}
→ σk(qi) = σk+1(qi) ∀i ∈ {1, ..., k}
→ σk(pk+1) = pk+1 6= qk+1 = σk+1(pk+1)

→ σk(qk+1) = qk+1 6= pk+1 = σk+1(qk+1).

• If a ≤ k, then we can display
σk+1 = (pk+1pk...pa+1paqa)(pa−1qa−1)...(p1q1) and
σk = (pk...pa+1paqa)(pa−1qa−1)...(p1q1) with qi+1 = pi
for all i ∈ {a, ..., k}. We get

→ σk(pi) = σk+1(pi) ∀i ∈ {1, ..., k}
→ σk(qi) = σk+1(qi) ∀i ∈ {1, ..., k + 1} \ {a}
→ σk(pk+1) = pk+1 6= qk+1 = pk = σk+1(pk+1)

→ σk(qa) = pk = qk+1 6= pk+1 = σk+1(qa).

This gives σk(i) = σk+1(i) for all i ∈ {1, ..., n} \ {pk+1, qa}.
Then, since (Mσk − I)ei = eσk(i)− ei and (Mσk+1

− I)ei = eσk+1(i)− ei
for all i ∈ {1, ..., n}, the following columns of the two matrices are
equal:

(Mσk − I)ei = (Mσk+1
− I)ei ∀i ∈ {1, ..., n} \ {pk+1, qa}.

The other two columns are given by

xk := (Mσk − I)epk+1
= epk+1

− epk+1
= 0

xk+1 := (Mσk+1
− I)epk+1

= eqk+1
− epk+1

6= 0

yk := (Mσk − I)eqa =

{
eqa − eqa = 0, if a = k + 1

epk − eqa 6= 0, if a 6= k + 1

yk+1 := (Mσk+1
− I)eqa = epk+1

− eqa 6= 0

13



We get

If a = k + 1⇒ xk+1 + yk+1 = 0 = yk

If a 6= k + 1⇒ qk+1 = pk ⇒ xk+1 + yk+1 = yk,

which gives xk+1+yk+1 = yk in both cases. Together with the relation
xk = 0 /∈ L we find

L′ :=

{
L ∪ {xk+1}, if yk /∈ L
(L \ {yk}) ∪ {xk+1, yk+1}, if yk ∈ L

as a maximal system of linearly independent column vectors of
Mσk+1

− I, which means a basis for im(Mσk+1
− I) = VMσk+1

:

• The system L1 := L ∪ {xk+1} is linearly independent in every
case, because xk+1 has an entry on position pk+1, which cannot
be displayed as a linear combination of vectors of L: All vectors of
L are column vectors of Mσk − I, and since σk(pk+1) = pk+1, the
entry on position pk+1 is zero for all column vectors of Mσk − I.

• If yk ∈ L, the system L2 := (L \ {yk}) ∪ {xk+1, yk+1} is linearly
independent, since yk+1 = yk − xk+1 and L1 is linearly indepen-
dent.

• The system L3 := L ∪ {xk+1, yk+1} is linearly dependent: The
vectors xk+1 and yk+1 are both not in L, because each has an
entry on position pk+1. It is yk either a vector of L or can be at
least displayed as a linear combination of vectors of L, but also
as a linear combination of xk+1 and yk+1 via yk = xk+1 + yk+1.

This means |L′| = rk(Mσk+1
− I). It is |L1| = |L|+ 1. If yk ∈ L, then

|L2| = (|L| − 1) + 2 = |L| + 1. So we have |L′| = |L| + 1. Using the
induction hypothesis, this gives the result.

�

Theorem 3.3 Regard f : Sn ↪→ U(Cn) the monomorphism defined in
chapter 2. For all τ, σ ∈ Sn:

τ ≤ σ ⇔Mτ ≤Mσ

Proof. This theorem follows directly from Lemma 3.2 since

τ ≤ σ :⇔ l(σ) = l(τ) + l(τ−1σ)⇔ |VMσ | = |VMτ |+ |VMτ−1σ
| ⇔: Mτ ≤Mσ.

�
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Lemma 3.4 (Brady, Reference [Bra01], Lemma 2.2)
For all τ = τ1...τk ∈ Sn with k disjoint cycles, it is l(τ) =

∑k
i=1 l(τk).

Proof. The proof given in [Bra01] is: ”The disjoint cycles of τ can only be
factored as products of transpositions using disjoint sets of transpositions”.
Note: Since the cycles are pairwise disjoint, the intersection Vτi ∩ Vτj is

empty for i 6= j, and we have VMτ =
⊕k

i=1 VMτi
, and especially |VMτ | =∑k

i=1 |VMτi
|. Lemma 3.2 gives l(τ) =

∑k
i=1 l(τk).

�

Note: In [Bra01] Brady also says τi ≤ τ∀i ∈ {1, ..., k}. We show this in
Lemma 3.8.

Lemma 3.5 (Brady, Reference [Bra01], Lemma 2.3)
A cycle c of Sn permutating k distinct elements, with k ∈ {1, ..., n}, has
length l(c) = k − 1.

Proof. Regard some cycle c = (x1...xk) ∈ Sn with some k ∈ {1, ..., n} and
for all i1, i2 ∈ {1, ..., k}: i1 6= i2 ⇒ xi1 6= xi2 , such that c permutes k distinct
elements.

1. Then we can represent c = (x1x2)(x2x3)...(xk−1xk), which gives l(c) ≤
k − 1.

2. On the other hand we show l(c) ≥ k − 1 via induction on k: Base
case k = 1: l(c) = l((xk)) = 0 ≥ 1 − 1 = k − 1. Regard now k > 1.
Induction Hypothesis: For all t ∈ {1, ..., k − 1}: A t-cycle has length
≥ t− 1. Induction Step:

(i) Regard c = τ1...τl(c) with transpositions τi = (piqi) from Sn.
Since l(c) is the minimal amount of transpositions c can be dis-
played as, it is τi 6= τj for i 6= j, and it is τ1c = τ1τ1τ2...τl(c) =
τ2...τl(c) giving l(τ1c) ≤ l(c)− 1.

(ii) Since c = (x1...xk) moves elements x1, ..., xk, it must be τ1 =
(xixj) with i, j ∈ {1, ..., k}, i < j without loss of generality. This
gives a representation

τ1c = (xixj)(x1...xi...xj ...xk) = (x1...xi−1xj ...xk)(xi...xj−1)

and further by using step 1, Lemma 3.4 and the induction hy-
pothesis:

l(c)− 1 ≥ l(τ1c) = l((x1...xi−1xj ...xk)) + l((xi...xj−1))

≥ ((i− 1) + (k − j) + 1)− 1 + ((j − 1)− i+ 1)− 1 = k − 2.
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We get l(c)− 1 ≥ k − 2 which means l(c) ≥ k − 1.

Step 1. and 2. give the equality l(c) = k − 1.

�

Note: In the following we will claim for each cycle c = (x1...xk) ∈ Sn that
i1 6= i2 ⇒ xi1 6= xi2 without loss of generality.

Lemma 3.6 (Brady, Reference [Bra01], Lemma 2.4)
If τ = c1...ck a permutation in Sn with k disjoint cycles (including 1-cycles),
then it is l(τ) = n− k.

Proof. Using Lemma 3.5 we get that for all i ∈ {1, ..., k} we have l(ci) =
li−1, where li is the amount of elements permuted by ci. Since the cycles are
disjoint and since we also regard 1-cycles, it is

∑k
i=1 li = n. Together with

Lemma 3.4 we get l(τ) =
∑k

i=1 l(ci) =
∑k

i=1(li−1) = (
∑k

i=1 li)−k = n−k.

�

Definition 3.7 For any cycle cτ = (x1...xl(cτ )+1) ∈ Sn and any permutation
σ ∈ Sn:

1. We say that cτ is contained in a cycle cσ = (y1...yl(cσ)+1) of σ (cτ ⊆ cσ),
iff

∀i ∈ {1, ..., l(cτ ) + 1} : ∃j(i) ∈ {1, ..., l(cσ) + 1} : xi = yj(i).

2. If cτ is contained in cσ, we say that cτ is ordered consistently with σ,
iff ∃k ∈ N : ∀i1, i2 ∈ {1, ..., l(cτ ) + 1} :

i1 ≤ i2 ⇒ (j(i1) + k) mod(l(cσ) + 1) ≤ (j(i2) + k) mod(l(cσ) + 1),

where the ≤ relation on the cosets is defined to be the comparison
between their minimal nonnegative representatatives.

Lemma 3.8 Regard any σ ∈ Sn defined by disjoint cycles c1...ck = σ. Then∏
i∈U ci ≤ σ for all U ⊆ {1, ..., k}.

Proof. Since disjoint cycles commute we have

l((
∏
i∈U

ci)
−1σ) = l(

∏
i∈{1,...,k}\U

ci)

Lemma 3.4
=

∑
i∈{1,...,k}\U

l(ci) =
∑

i∈{1,...,k}

l(ci)−
∑
i∈U

l(ci)

Lemma 3.4
= l(σ)− l(

∏
i∈U

ci)

which gives
∏
i∈U ci ≤ σ.
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�

Proposition 3.9 (Brady, Reference [Bra01], Proposition 2.6) Regard σ ∈
Sn. For all a, b ∈ {1, ..., n} :

(ab) ≤ σ ⇔ (ab) is contained in one cycle of σ.

Proof.

• ”⇒”: Let (ab) ≤ σ. Suppose on the contrary that ca = (ax1...xl(ca))
is the cycle of σ containing a, and cb = (by1...yl(cb)) is the cycle of σ
containing b. Let ca be disjoint with cb. Then

l((ab)−1cacb) = l((ab)cacb)

= l((ab)(ax1...xl(ca)+1)(by1...yl(cb)+1))

= l((ax1...xl(ca)+1by1...yl(cb)+1)

Lemma 3.5
= (2 + (l(ca) + 1) + (l(cb) + 1))− 1

= l(ca) + l(cb)− l((ab)) + 4 6= l(σ)− l((ab))
Lemma 3.4

= l(cacb)− l((ab)) + 4 6= l(cacb)− l((ab))

giving (ab) � cacb. Since cacb ≤ σ by Lemma 3.8, transitivity gives
(ab) � σ.

• ”⇐”: If (ab) is contained in cycle cab of σ, then l((ab)−1cab) =
l((ab)(ax1...xtby1...ys)) = l((by1...ys)(ax1...xt)) = l(cab)− 1 = l(cab)−
l((ab)), giving (ab) ≤ cab. Since cab ≤ σ by Lemma 3.8, transitivity
gives (ab) ≤ σ.

�

Lemma 3.10 For any cycle cτ ∈ Sn and any permutation σ ∈ Sn:
We have cτ ≤ σ if and only if

(a) cτ is contained in a cycle of σ and

(b) cτ is ordered consistently with σ.

Proof.

• ”⇐”: We regard σ = σ1...σm disjoint cycles of σ (including 1-cycles).
Since (a) holds for cτ and σ, we find that there exists a cycle σs of σ
such that cτ is contained in σs and cτ is disjoint with all other cycles
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of σ. We get

cτ
−1σs

Lemma 3.5
= (x1...xl(cτ )+1)

−1(y1...yl(σs)+1)

= (xl(cτ )+1...x1)(y1...yl(σs)+1)

(a)
= (yj(l(cτ )+1...yj(2)yj(1))(y1...yl(σs)+1)

(b)
= (yj(l(cτ )+1)...yj(2)yj(1))(y1...yj(1)...yj(2)...yj(l(cτ )+1)...yl(σs)+1)

= (yj(1)...yj(2)−1)︸ ︷︷ ︸
=:c1

(yj(2)...yj(3)−1)︸ ︷︷ ︸
=:c2

...

... (yj(l(cτ )+1)...yl(σs)+1y1...yj(1)−1)︸ ︷︷ ︸
=:cl(cτ )+1

and further since disjoint cycles commute

c−1τ σ = c−1τ σ1...σm

= σ1...σs−1c
−1
τ σsσs+1...σm

= σ1...σs−1c1...cl(cτ )+1σs+1...σm

=: c̃1...c̃p

giving us p := (m− 1) + (l(cτ ) + 1) disjoint cycles. Using Lemma 3.6
we get

l(c−1τ σ) = n− p
= n− ((m− 1) + (l(cτ ) + 1))

= n− (n− l(σ)− 1 + l(cτ ) + 1)

= l(σ)− l(cτ )

which gives cτ ≤ σ.

• ”cτ ≤ σ ⇒ (a)”: (Brady, Reference [Bra01], Proposition 2.7) Suppose
not. Then there exist two elements a, b ∈ {1, ..., n} contained in cτ
but not contained in one cycle of σ. Then using Proposition 3.9 we get
(ab) ≤ cτ and (ab) � σ. Transititity gives cτ � σ.

• ”cτ ≤ σ ⇒ (b)”: Suppose not.

cτ
−1σs

Lemma 3.5
= (x1...xl(cτ )+1)

−1(y1...yl(σs)+1)

= (xl(cτ )+1...x1)(y1...yl(σs)+1)

(a)
= (yj(l(cτ )+1...yj(2)yj(1))(y1...yl(σs)+1)

¬(b)
= (yj(l(cτ )+1)...yj(2)yj(1))

(y1...yj(ψ(1))...yj(ψ(2))...yj(ψ(l(cτ )+1))...yl(σs)+1)
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with some permutation ψ ∈ Sl(cτ )+1, ψ 6= id. This gives less than
l(cτ ) + 1 disjoint cycles, and with Lemma 3.6 we get l(c−1τ σ) 6= l(σ)−
l(cτ ), which means cτ � σ.

�

The definition of a cycle ordered consistently with a permutation in this
thesis is different from the Definition 2.8 of Brady, Reference [Bra01]. We
now show that both definitions are equivalent:

Lemma 3.11 For any cycle cτ ∈ Sn with l(cτ ) > 1 and for any permutation
σ ∈ Sn:

cτ is ordered consistently with σ

⇔ ∀a, b, c ∈ {1, ..., n} : (abc) ≤ cτ ⇒ (abc) ≤ σ

Proof. Regard cτ = (x1...xl(cτ )+1). Define cσ as the cycle of σ containing the
element x1. Without loss of generality we represent it as cσ = (y1...yl(cσ)+1)
with y1 = x1. Using Lemma 3.10 we get ∀i1, i2 ∈ {1, ..., l(cτ ) + 1}, i1 6= i2:

(x1xi1xi2) ≤ cτ ⇔ i1 < i2

⇓
(x1xi1xi2) ≤ σ ⇔ ∃j(i1), j(i2) ∈ {1, ..., l(cσ) + 1} : j(i1) < j(i2)

and xi1 = yj(i1) , xi2 = yj(i2)

Since x1 could be chosen as any element of cτ by using the modulo operation,
the result follows by setting a = x1, b = xi1 and c = xi2 .

�

Now, since we have characterized the meaning of a cycle being lower
than or equal to a permutation, we can define the following:

Definition 3.12 (Brady, Reference[Bra01], Definition 2.11) Regard τ, σ ∈
Sn. We say that τ has crossing cycles with respect to σ, iff

∃a, b, c, d ∈ {1, ..., n} : (abcd) ≤ σ and (ac) ≤ τ and (bd) ≤ τ but (abcd) � τ.

Lemma 3.13 Let (τi)i∈{1,...,k} be any family of pairwise disjoint cycles of
Sn, and (σi)i∈{1,...,k} be any family of pairwise disjoint cycles of Sn. Then

τi ≤ σi∀i ∈ {1, ..., k} ⇒
k∏
i=1

τi ≤
k∏
i=1

σi.
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Proof. Lemma 3.10 gives, that for all j ∈ {1, ..., k} τj is contained in σj
and disjoint with all other cycles of (σi)i∈{1,...,k}\{j}. This gives

l
(
(

k∏
i=1

τi)
−1

k∏
i=1

σi
)

= l
( k∏
i=1

τ−1i σi
)

Lemma 3.4
=

k∑
i=1

l(τ−1i σi)

τi≤σi∀i∈{1,...,k}
=

k∑
i=1

(
l(σi)− l(τi)

)
=

k∑
i=1

l(σi)−
k∑
i=1

l(τi)

Lemma 3.4
= l

( k∏
i=1

σi
)
− l
( k∏
i=1

τi
)

which gives the result.

�

Lemma 3.14 (Brady, Reference [Bra01], Lemma 2.12)
For all distinct a, b, c, d ∈ {1, ..., n} we have (ac)(bd) � (abcd).

Proof. l
((

(ac)(bd)
)−1

(abcd)
)

= l
(

(bd)
(
(ac)(abcd)

))
= l
(
(bd)(ab)(cd)

)
=

l
(
(adcb)

)
= 3 6= 1 = 3− 2 = l

(
(abcd)

)
− l
(
(ac)(bd)

)
, which gives the result.

�

Thoerem 3.15 (Brady, Reference [Bra01], Theorem 2.14)
Regard any τ, σ ∈ Sn. We have τ ≤ σ if and only if

(a) each cycle of τ is contained in a cycle of σ and

(b) each cycle of τ is ordered consistently with σ and

(c) τ has no crossing cycles with respect to σ.

Proof.

• (a), (b)&(c) ⇒ τ ≤ σ: We show via induction on the amount t of
distinct elements transposed by σ, that l(τ−1σ) = l(σ) − l(τ) for all
τ ∈ Sn fulfilling (a), (b) and (c) with σ.

1. Base Case t = 0: Then σ = id and because of (a) it is also τ = id.
This gives l(τ−1σ) = l(id) = 0 = l(id) − l(id) = l(σ) − l(τ).
Regard now t > 0:
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2. Induction Hypothesis: For all σ ∈ Sn transposing less than t
distinct elements it is l(τ−1σ) = l(σ)−l(τ) for all τ ∈ Sn fulfilling
(a), (b) and (c) with σ.

3. Induction Step: If σ consists of more than one cycle, each cycle of
τ−1 can commute with those cycles of σ it is disjoint with. Then
we can show the result directly from the induction hypothesis by
using Lemma 3.4. So we regard just one cycle σ = cσ. Let τ =
τ1...τk be disjoint cycles of τ . Because disjoint cycles commute
and because the result is trivial for τ = id, we can assume that
τ1 6= id. Since (a) and (b) hold for τ and σ, the proof of Lemma
3.10 shows that for τ1 = (x1...xl(τ1)+1) and for σ = (y1...yl(σ)+1)
we have

τ−11 σ = (yj(1)...yj(2)−1)︸ ︷︷ ︸
=:c1

(yj(2)...yj(3)−1)︸ ︷︷ ︸
=:c2

...

... (yj(l(τ1)+1)...yl(σ)+1y1...yj(1)−1)︸ ︷︷ ︸
=:cl(τ1)+1

and τ1 ≤ σ.
We define σ̃ := τ−11 σ and τ̃ := τ−11 τ and get

τ−1σ = τ̃−1σ̃.

Now we show the conditions (a),(b) and (c) for τ̃ and σ̃:

(a) Each cycle of τ̃ is contained in a cycle of σ̃: Suppose on the
contrary that there exists r ∈ {2, ..., k} such that τr contains
two Elements yu and yv contained in different cycles of σ̃,
with indices u, v ∈ {1, ..., l(σ) + 1}, u 6= v. Because τr and τ1
are disjoint, this means that there exist two indices i1, i2 ∈
{1, ..., l(σs) + 1}, i1 6= i2, such that j(i1) < u < j(i2) < v or
u < j(i1) < v < j(i2).
We regard the first case. Because of Lemma 3.10 we would
find (yj(i1)yuyj(i2)yv) ≤ σ, (yuyv) ≤ τr ≤ τ and (yj(i1)yj(i2)) ≤
τ1 ≤ τ , but (yj(i1)yuyj(i2)yv) � τ , which would led to the
wrong state that τ has crossing cycles with respect to σ.
In the other case we would get an analogue contradiction.

(b) Each cycle of τ̃ is ordered consistently with σ̃, because each
cycle of τ̃ is also a cycle of τ , because (b) holds for τ and σ,
and because we can represent σ̃ and σ in a way that the order
of elements contained in the cycles of σ̃ is the same than in
σ.
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(c) The Permutation τ̃ has no crossing cycles with respect to σ̃:
Suppose there exist a, b, c, d ∈ {1, ..., n} : (abcd) ≤ σ̃ and
(ac) ≤ τ̃ and (bd) ≤ τ̃ . We show (abcd) ≤ τ̃ . Using Lemma
3.10 we get (abcd) ≤ σ and (ac) ≤ τ and (bd) ≤ τ . Since τ
has no crossing cycles with respect to σ, it follows (abcd) ≤ τ
and further (abcd) ≤ τ̃ , because (abcd) is disjoint with τ1.

Because (a), (b) and (c) also hold for τ̃ and σ̃, we can use the
induction hypothesis for each cycle of σ̃ by using Lemma 3.4 after
having commuted the cycles of τ̃ with those of σ̃ they are disjoint
with. We get

l(τ−1σ) = l(τ̃−1σ̃)

= l(σ̃)− l(τ̃)

Since τ1 ≤ σ by Lemma 3.10 and τ1 ≤ τ by Lemma 3.8 this is
equal to

l(σ)− l(τ1)− (l(τ)− l(τ1))
= l(σ)− l(τ),

which gives τ ≤ σ.

• τ ≤ σ ⇒ (a), (b): For each cycle cτ of τ : Lemma 3.8 gives cτ ≤ σ.
Then Lemma 3.10 gives the states (a) and (b).

• τ ≤ σ ⇒ (c) (Brady, Reference[Bra01], Proposition 2.13): Suppose
there exist a, b, c, d ∈ {1, ..., n} such that (abcd) ≤ σ, (ac) ≤ τ and
(bd) ≤ τ . We show (abcd) ≤ τ . Since (abcd) ≤ σ, Lemma 3.10 gives
that a, b, c and d are contained in the same cycle of σ, and (acbd) � σ.
Let further τac be the cycle of τ containing a and c, and τbd be the
cycle of τ containing b and d.

– If τac = τbd, then we find a representation such that either τac =
(...a...b...c...d...) or τac = (...a...c...b...d...). If the second case
holded, Lemma 3.8 would give τac ≤ τ and with Lemma 3.10 and
transitivity we would get (acbd) ≤ τac ≤ τ ≤ σ in contradiction
to (acbd) � σ. So it is τac = (...a...b...c...d...), and Lemma 3.8
and Lemma 3.10 give (abcd) ≤ τ .

– If τac 6= τbd, then since we assumed them to be disjoint, Lemma
3.13 gives (ac)(bd) ≤ τacτbd. With Lemma 3.8 we get τacτbd ≤ τ
and transitivity gives (ac)(bd) ≤ σ. Lemma 3.14 now gives the
contradiction (ac)(bd) � (abcd) ≤ σ.

�
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Lemma 3.16 (Brady, Reference [Bra01], Lemma 3.9) For τ, σ ∈ Sn:

τ ≤ σ ⇔ τ−1σ ≤ σ
⇔ στ−1 ≤ σ.

Proof. Lemma 1.8 gives the result for the unitary group, and the result for
Sn follows by Theorem 3.3.

�

Lemma 3.17 (Brady, Reference [Bra01], Lemma 3.10) For τ, σ, φ ∈ Sn, if
φ ≤ τ ≤ σ, then φ−1τ ≤ φ−1σ and τ−1σ ≤ φ−1σ.

Proof. Lemma 1.9 gives the result for the unitary group, and the result for
Sn follows with Theorem 3.3.

�

Note: Brady’s proof of his Lemma 3.9 in [Bra01] is a bit different from our
proof of our Lemma 1.8. This might help us to understand that the partial
order can indeed be transferred from the unitary group to the symmetric
group.

3.1 Example Sn with n = 3

S3 = {id, (12), (23), (13), (123), (132)}

Mid =

1 0 0
0 1 0
0 0 1

 = I , M(123) =

0 0 1
1 0 0
0 1 0

 , M(132) =

0 1 0
0 0 1
1 0 0

 ,

M(12) =

0 1 0
1 0 0
0 0 1

 , M(23) =

1 0 0
0 0 1
0 1 0

 , M(13) =

0 0 1
0 1 0
1 0 0



|VMid
| = |im(Mid − I)| = |im

0 0 0
0 0 0
0 0 0

 | = 0 = l(id)

|VM(12)
| = |im(M(12) − I)| = |im

−1 1 0
1 −1 0
0 0 0

 | = 1 = l((12))

|VM(23)
| = |im(M(23) − I)| = |im

0 0 0
0 −1 1
0 1 −1

 | = 1 = l((23))

|VM(13)
| = |im(M(13) − I)| = |im

−1 0 1
0 0 0
1 0 −1

 | = 1 = l((13))

23



|VM(123)
| = |im(M(12) − I)| = |im

−1 0 1
1 −1 0
0 1 −1

 | = 2 = l((123))

|VM(132)
| = |im(M(132) − I)| = |im

−1 1 0
0 −1 1
1 0 −1

 | = 2 = l((132))

We get the following partial order on S3:

(123) (132)

(12) (13) (23)

id

3.2 Example Sn with n = 4

We get the following partial order on S4:
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(12) (123) (1234)

(132)

(13) (12)(34) (1243)

(124)

(23) (142) (1324)

id (13)(24)

(14) (134) (1342)

(143)

(24) (14)(23) (1423)

(234)

(34) (243) (1432)

The elements displayed in blue color are the ”allowable elements”, the
topic of the next chapter:

4 The Lattice of Allowable Elements

Since we have studied the set of permutations as a partially ordered set, we
now ask for a possibility to form a lattice.

We now regard the set Πn of all partitions of {1, ..., n}. It is a partially
ordered set (Πn,≤) with the partial order ≤ defined via π1 ≤ π2, iff every
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block of π1 is contained in a block of π2 (Reference [Sta12]). The cycle
structure of a permutation σ ∈ Sn defines a partition of Πn. We will denote
this partition {σ} like Brady did (Reference [Bra01]).

Definition 4.1 (Brady, Reference [Bra01], Definition 3.1) We fix the n-cycle
γ := (1...n). Then we define

A := {σ ∈ Sn
∣∣σ ≤ γ}

the set of ”allowable elements”.

Definition 4.2 (Brady, Reference [Bra01]) Regard any partition P ∈ Πn.

• We say that two blocks B1 and B2 of P cross, iff there are integers
a, b, c and d ∈ {1, ..., n} so that 1 ≤ a < b < c < d ≤ n and a, c ∈ B1

and b, d ∈ B2.

• P is called noncrossing if none of its blocks cross.

Like in [Bra01] we will denote NCP (n) the subset of noncrossing parti-
tions of Πn. For h : A → Πn, σ 7→ {σ} it is im(h) = NCP (n).

Lemma 4.2 (Brady, Reference [Bra01], Lemma 3.2) For all τ, σ ∈ A :

τ ≤ σ ⇔ {τ} ≤ {σ}

Proof. Since τ ≤ γ and σ ≤ γ Theorem 3.15 gives that the permutation τ
is ordered consistently with σ and that τ has no crossing cycles with respect
to σ. So Theorem 3.15 gives τ ≤ σ ⇔ each cycle of τ is contained in a cycle
of σ, which is equivalent to {τ} ≤ {σ}.

�

In Reference [Kre72] Krevaras shows that the poset NCP (n) forms a
lattice. In [Bra01] it says ”The meet operation is made up by intersection
and the join operation is made up by the noncrossing closure of the union.”
In [Bra01] Brady also mentions that ”the rank function on NCP (n) given
in [Kre72] corresponds with the length function on A ”, and that ”the atoms
correspond to the transpositions”.

Definition 4.3 (Brady, Reference [Bra01], Definition 3.3) ”For each τ, σ ∈
A we define the permutation τ ∧ σ by the following conditions.

(a) The numbers x and y belong to the same cycle of τ ∧ σ if and only if x
and y belong to the same cycles in both τ and σ.

(b) The order of elements in the cycles of τ ∧ σ is consistent with γ.”
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Lemma 4.4 (Brady, Reference [Bra01], Lemma 3.4) For each τ, σ ∈ A :
τ ∧σ ∈ A and τ ∧σ is the greatest lower bound of τ and σ. We call it meet
of τ and σ.

Proof. Using Theorem 2 of reference [Kre72] we get that {τ∧σ} ∈ NCP (n).
Further it is {τ ∧σ} = {τ}∧{σ}. We get that τ ∧σ ∈ A . The result follows
from Lemma 4.2.

�

Definition 4.5 (Brady, Reference [Bra01], Definition 3.5) ”For each τ, σ ∈
A : We define the permutation τ ∨ σ by the following conditions.

(a) {τ ∨ σ} = {τ} ∨ {σ}.

(b) The order of elements in the cycles of τ ∨ σ is consistent with γ.”

Lemma 4.6 (Brady, Reference [Bra01], Lemma 3.6) For each τ, σ ∈ Sn:
τ ∨ σ ∈ A and τ ∨ σ is the least upper bound of τ and σ. We call it join of
τ and σ.

Proof. Because {τ} ∨ {σ} ∈ NCP (n) and because the cycles of {τ} ∨ {σ}
are ordered consistently with γ, it is τ ∨ σ ∈ A . Using Theorem 3 of [9],
{τ}∨ {σ} is the least upper bound of {τ} and {σ} in NCP (n), and Lemma
4.2 gives the result for A .

�

Now we have got the following theorem:

Theorem 4.7 (Brady, Reference [Bra01], Theorem 3.7) The poset (A ,≤)
with the above definitions of meet and join forms a lattice.

In chapter 3 we saw that the symmetric group can be regarded as a sub-
group of the unitary group over a finite dimensional unitary vector space.
It is also possible to generalize the theorem above: Two distinct elements
of U(Cn) do not have a common upper bound. Because of that the poset
U(Cn) does not form a lattice by itself. So we regard an interval of elements
of the unitary group. The basic idea is the same as using allowable elements:

Theorem 4.8 (Brady and Watt, Reference [BW02], Theorem 2) If A ≤ C
in U(Cn) and |VC | − |VA| = m ∈ {0, ..., n}, then the interval [A,C] = {B ∈
U(Cn)|A ≤ B ≤ C} is isomorphic to the lattice of subspaces of Cm under
inclusion.

Proof. Since the interval [VA, VC ] in the lattice of subspaces of Cn has
dimension |VC | − |VA| = m, it is isomorphic to Cm.

Regard g : [A,C]→ [VA, VC ], B 7→ VB:
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• The function g is well defined: Let B ∈ [A,C]. Then Corollary 1.7
gives

A ≤ B ⇒ VA ⊆ VB
B ≤ C ⇒ VB ⊆ VC

}
⇒ VB ∈ [VA, VC ]

• The function g is bijective: Regard any S ∈ [VA, VC ]. We show that
there exists exactly one B ∈ [A,C] such that VB = S.

(a) Theorem 1.12 gives S ⊆ VC ⇒ ∃!B ∈ U(Cn) : B ≤ C ∧ VB = S.

(b) Since VA ⊆ VB Theorem 1.12 gives that ∃!A′ ∈ U(Cn) :
A′ ≤ B ∧ VA′ = VA. Since B ≤ C by (a), transitivity gives
A′ ≤ C. Since VA ⊆ VC , the uniqueness part gives A = A′ and
then we have A ≤ B.

The result follows from (a) and (b).

• The function g respects the partial orders: Regard A ≤ B ≤ B′ ≤ C.
Then by Corollary 1.7: VA ⊆ VB ⊆ VB′ ⊆ VC .

• The function g−1 respects the partial orders: Regard VA ⊆ U ⊆ U ′ ⊆
VC . Since g is bijective we find unique B,B′ ∈ [A,C] such that U = VB
and U ′ = VB′ . We regard a restriction of g mapping bijectively from
the interval [A,B′] to the interval [VA, VB′ ], and find that for U ∈
[VA, VB′ ] there is a unique B′′ ∈ [A,B′] satisfying U = VB′′ . Because
of [A,B′] ⊆ [A,C] we get B′′ = B and because of B′′ ≤ B′ we get
B ≤ B′.

�

Corollary 4.9 (Brady and Watt, Reference [BW02], Corollary 4) If C ∈
U(Cn) and S1 ⊂ S2 ⊂ ... ⊂ Sk = VC is a chain of subspaces in VC , then
C factors uniquely as a product of k transformations C = B1B2...Bk with
B1B2...Bi ≤ C and VB1B2...Bi = Si. for all i ∈ {1, ..., k}.

Proof. For any i ∈ {1, ..., k} it is Si ⊆ VC , so Theorem 1.12 gives a unique
Ci ∈ U(Cn) such that Ci ≤ C and VCi = Si. We define B1 := C1 and Bi =
(Ci−1)

−1Ci for i ∈ {2, ..., k}, so that B1B2...Bi ≤ C and VB1B2...Bi = Si. By
Theorem 1.12 it is B1 unique. It follows via induction that Bi is unique for
all i ∈ {1, ..., k}.

�

Using this Corollary in case of maximal chains, we get a strong version of
the Cartan-Dieudonné Theorem, with respect to the fact that char(C) 6= 2:
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Corollary 4.10 (Brady and Watt, Reference [BW02], Corollary 5) If C ∈
U(Cn) with |VC | = k and {0} ⊂ S1 ⊂ S2 ⊂ ... ⊂ Sk = VC is a maximal
flag in VC , then C factors uniquely as a product of k complex reflections,
C = R1R2...Rk, with VR1R2...Ri = Si for all i ∈ {1, ..., k}.

Proof. For all i ∈ {1, ..., k} regard Ci and Bi defined in the proof of
Corollary 4.9. We further define S0 := {0} ⊂ VC , then it is C0 := I the
unique transformation satisfying C0 ≤ C and VC0 = S0.
It is Si = VCi and Ci ∈ [I, C] for all i ∈ {0, .., k}. Since the function g−1

defined in the proof of Theorem 4.8 respects the partial orders, we get for
all i ∈ {1, ..., k} : VCi−1 ⊂ VCi ⇒ Ci−1 ≤ Ci. This gives

|VBi | = |V(Ci−1)−1Ci |
=
↑

Ci−1≤Ci

|VCi | − |VCi−1 |

= |Si| − |Si−1| =
↑

max. flag

1.

Using Corollary 1.14 we get thatBi is a complex reflection, so we setRi := Bi
for all i ∈ {1, ..., k}.
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